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A METHOD FOR CONSTRUCTING LOCAL MONOTONE
PIECEWISE CUBIC INTERPOLANTS*

F. N. FRITSCH" AND J. BUTLAND*

Abstract. A method is described for producing monotone piecewise cubic interpolants to monotone
data which is completely local and which is extremely simple to implement.
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In [4] Fritsch and Carlson gave necessary and sufficient conditions for a piecewise
cubic interpolant to monotone data to be monotonic. The algorithm which they
proposed for computing such an interpolant suffers from three defects: (1) it requires
two passes over the data; (2) the result is dependent upon the order in which the data
are processed; and (3) it is potentially nonlocal (i.e., a correction introduced in the
first interval might ripple through the entire interpolant).

The purpose of this note is to acquaint the mathematical community with a
technique proposed by Butland [2] for obtaining monotone piecewise cubic inter-
polants which avoids all of these problems. Before we describe Butland’s method, we
recallsome notation from [4]. Letxl <x2 <" "<xn (n > 2) andletfi -’f(xi) 1,. ., n
be the values of a monotone function at these points. Let p(x) be a piecewise cubic
function such that p(xi) =fi and p’(xi) di, 1," ", n. Let Ai (fi+l-fi)/ (Xi+l--
xi),i=l,. .,n-1.

A piecewise cubic interpolation scheme is a method for selecting the values of
the derivatives di. Butland’s idea is to construct a function G such that

(1) di=G(Ai_,Ai), =2,... ,n-l,

and p(x) is monotonic. Since di depends only on neighboring slopes, a method based
on formula (1) is necessarily one-pass and local. If G is a symmetric function of its
arguments, the result will also be independent of the direction of processing, as desired.

Sufficient conditions for an acceptable G-function are given in [2], where Butland
observes that the harmonic mean

(2)
if S1S2 > O,

otherwise

satisfies all of these conditions. Unfortunately, formula (2) tends to produce inter-
polants that are "too fiat", because the values (ai,/i)= (di/Ai, di+l/Ai) are restricted
to the small square [0, 2][0, 2], contained in the monotonicity region. We have
experimented with various G-functions that fill out the square [0, 3][0, 3] more
completely, thus producing more "reasonable" curves. One such family of functions
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This is the largest square contained in the monotonicity region.
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is described in [3], where the recommended formula is

(3)

0 if Sls2 O,

 ls lls21sign if IS21_-<lSll,

G(S2, S) otherwise.

One negative aspect of (1) is that it gives the same value for dg regardless of the
relative spacing of the surrounding x-values. One way to remedy this is to replace (1)
with

(4) di G(Ai_I, Ai, hi-l, hi), 1, n 1,

where hi x.+a -x., j 1, , n 1. The conditions for an acceptable G-function now
are that, for all S1, 6’2, and all positive ha and h2:

A. G(S2, Sl, h2, hi) G(Sa, S2, ha, h2).

[This makes the formula independent of the order of the data points.]

B. min (S1, S2) a(Sl, S2, h 1, h2) -< max (Sl, S2).

[Thus the slope of the curve lies between the slopes of the two adjacent data segments.
While not necessary for monotonicity, this condition seems intuitively reasonable.]

Co G(Sl, S2, hl, h2)---O if SlS2=<0.

[For S1S2 0, this is a necessary condition for monotonicity. For S1S2 < 0, this implies
that the curve stays within the limits of the data.]

D. IG(Sa, S2, hi, h2)l min (31S11, 3ls2l).
[This insures that (ag,/3g) (dg/Ag, dg/a/Ag) lies inside the square [0, 3] x[0, 3].]

When coupled with appropriate boundary conditions, (4) with any acceptable G-
function gives a monotone piecewise cubic interpolant to the given data which has all
the properties we desire.

In the discussion of [1], Brodlie proposed a formula which can be written in the
form of (4) with

(s)

where

SlS2
G(S1, S2, h 1, h2) S2 -[- 1 o )S

if 51S2 > O,

otherwise,

1( h2 ) h1+2h2a= l+hl+h2 =3(h1+h2)"

We observe that this G-function satisfies conditions A-D and it reduces to (2) when
ha =h2.

Much experimentation indicates that (4) and (5), when coupled with the boundary
conditions in either [2] or [4], generally produce interpolants that are at least as
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"visually pleasing" as (1) and (3). Furthermore, it can be shown that for uniformly
spaced data (5) gives an O(h 2) approximation to f’(xi), whereas (3) is only O(h).

In Figs. 1-4, we exhibit the curves produced by the four methods discussed here
when applied to the data set Akima 3 of [4]. We conclude that the technique described
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Method: Fritsch-Carlson method

FIG. 1. Result from the algorithm proposed in [4] when applied to the Akima 3 data. (This and all
following examples used boundary derivatives computed by the standard noncentral three-point formula.)
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Method: Original Butland formula

FIG. 2. Result of applying formulas (1) and (2) to the Akima 3 data.
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Method: Fritseh-Butland formula

FIG. 3. Result o[ applying.formulas (1) and (3) to the Akima 3 data.
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Method: New h-dependent formula

FIG. 4. Result of applying formulas (4) and (5) to the Akima 3 data.

here leads to a method for computing monotone piecewise cubic interpolants which
is simple, symmetrical, and completely local. We remark that the method also produces
reasonable results when applied to piecewise monotone data. Software implementing
this algorithm may be obtained by writing to the first author.
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