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ABSTRACT: A heuristic algorithm is proposed for dynamic 
calculation qf the median and other quantiles. The estimates 
are produced dynamically as the observations are generated. 
The observations are not stored; therefore, the algorithm has 
a very small and fixed storage requirement regardless of the 
number of observations. This makes it ideal for implement- 
ing in a quantile chip that can be used in industrial con- 
trollers and recorders. The algorithm is further extended 
to histogram plotting. The accuracy of the al,gorithm is 
analyzed. 

1. INTRODIJCTION 
In the field of simulation modeling, there is a trend 
toward repo:rting medians or o.%quantile:s rather than 
mean and st.andard deviation alone. (The p-quantile of 
a distributi0.n is defined as the value below which 100~ 
percent of th,e distribution lies.) However. unlike the 
mean and st.andard deviation, calculation of quantiles 
requires several passes through the data, and therefore, 
the observations have to be stored. Further, a large 
number of o’bservations is required to get a good esti- 
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mate of the quantiles. Thus, the amount of memory 
required becomes very large. In some cases, physical 
memory limitations make large numbers of replications 
impossible, and in others, the shuffling of virtual mem- 
ory pages slows down the simulation considerably. 

Most of the literature on median and other quantile 
calculations is in the area of computational complexity. 
Several papers [z, 3, 6, 71 have been published with the 
aim of reducing this complexity. For example, in these 
papers, it has been shown that medians and other 
quantiles can be calculated in linear time and memory 
space. The lower bound on space required to calculate 
the p-quantile of a sample of n observations is pn. As 
the number of observations grows, the space require- 
ment grows and soon the exact calculation becomes 
infeasible due to storage considerations. To save space, 
experimenters often group the data in cells. However, 
this approach leads to many idiosyncrasies as described 
in [5]. 

This article addresses the storage problem by calcu- 
lating quantiles dynamically as the data points are gen- 
erated. The observations are not stored; instead, a few 
statistical counters are maintained which help refine 
the estimate. 
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The algorithm is then generalized to produce histo- 
grams. It turns out that if many quantiles of the same 
variable are required (e.g., 0.10, 0.50, 0.90, 0.95, etc.), it 
may be more efficient as well as more accurate to cal- 
culate a complete histogram. 

The Pz algorithm proposed in this article requires a 
very small number of memory locations and does not 
require prior knowledge of the range (minimum and 
maximum values) of observations. It can, therefore, be 
implemented in a chip and used for display of quantiles 
and histograms in real-time control applications. 

In the next section, we present an intuitive develop- 
ment of the P2 concept, after which the P2 algorithm is 
described. We then analyze the performance of the al- 
gorithm. In Section 5, some variations of the P2 algo- 
rithm are described and error behavior is analyzed to 
confirm the superiority of the P2 design as compared to 
other similiar designs. 

2. INTUITIVE DEVELOPMENT 
OF THE P* CONCEPT 
The problem- of quantile ,estimation can be simply 
stated as follows: given a sample of II observations 
{Xl, x2, x3, . . . , x,), find the p-quantile. A straightfor- 
ward method to solve the problem is to sort the obser- 
vations in increasing order and to plot a “sample cumu- 
lative distribution” function as shown in Figure 1. In 
the figure, X(i) denotes the ith element in the ordered 
set. A point estimate of the p-quantile can be obtained 
from this figure by reading x([(,,-~)~+~I). Here, [ .] denotes 
rounding to the nearest integer. 
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FIGURE 1. One way to calculate a p-quantile is to sort the 
observations and plot a sample cumulative distribution function. 
This requires all n observations to be stored. The P algorithm 
solves this problem by maintaining five markers to store five points 
on the curve. 
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FIGURE 2. The five markers in the p? algorithm correspond to the 
minimum, p/2-quantile, p-quantile, (1 + p)/Squantile, and the 
maximum. The vertical height of each marker is equal to the 
estimated quantile value. 

The main problem with this and other alternative 
approaches is that all II observations must be stored. In 
many situations, n can be very large; also, there may be 
many variables whose quantiles may be required. It is 
this space problem that we intend to solve in this arti- 
cle. Instead of storing the complete distribution func- 
tion, we store only five points on it and update the 
points as more observations are generated. We show 
that a very good estimate of any quantile can be ob- 
tained by locating points at the minimum, the maxi- 
mum, and at the current estimates of (p/2)-, p-, and 
(1 + p)/2-quantiles. This divides observations into four 
cells whose boundaries (called marker heights) are ad- 
justed if necessary using a Piecewise-Parabolic (PP or 
P”) formula. The algorithm has been tested on many 
different types of random and nonrandom samples and 
has been observed to produce quantile estimates almost 
as precise as those obtained by order statistics. 

3. THE P* ALGORITHM FOR QUANTILES 
The algorithm consists of maintaining five markers: the 
minimum, the p/2-, p-, and (1 + p)/Zquantiles, and 
the maximum. The markers are numbered l-5. 
Markers z and 4 are also called middle markers be- 
cause they are midway between the p-quantile (marker 
3) and the extremes. As shown in Figure 2 (which is a 
rotated version of Figure l), the vertical height of each 
marker is equal to the corresponding quantile value, 
and its horizontal location is equal to the number of 
observations that are less than or equal to the marker. 
True values of the quantiles are, obviously, not known; 
at any point in time, the marker heights are the current 
estimates of the quantiles, and these estimates are up- 
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dated after every observation. Thus, after II observa- 
tions 

if 9i = height of ith marker i = I., 2, . . ,5 
and ni = horizontal position of the ith marker 

i=1,2,...,5 

= number of observation Xj such that 

XjI9i j=1,2,...,n 

then 91 = minimum of the observations so far 
q2 = current estimate of the p/Zquantile 
93 = current estimate of the p-quantile 
94 = current estimate of the (1 + p),/2-quantile 
95 = maximum of the observations so far. 

As a new observation comes in, it is compared with 
the markers, and all markers higher than the observa- 
tion are moved one position to the right. The resulting 
locations are then examined. Ideally, the ith marker 
should be located at rzl such that 

n; = 1 

n$ = (n - 1) f + 1 

n; = (n - 1)p + 1 

n; = (n - 1) y + 1 

n; = n. 

If a marker is off to the left or right of its ideal loca- 
tion ni by more than one, then the value (height) and 
the location of the marker is adjusted using a piecewise- 
parabolic prediction (PP or P”) formula. The formula 
assumes that the curve passing through any three adja- 
cent markers is a parabola of the form 9i =: an? + hi + C. 

Thus, if a marker is moved d positions to t.he right, its 
new height and location are given by: 

9i C 9i + pd 
%+i - C-1 

. (ni - ni.-l + d) :z’+: 1 ““, + (ni+I - ni -- d) :z 1 :I:!} 
,+ n1 I 

. nit ni + d i = 2, 3, 4 

where d is always either +l or -1. A one Iposition move 
to the left corresponds to d = -1. A derivation of the P* 
formula is given in the Appendix. 

Other points regarding the algorithm: 
1. The P2 formula need not be applied to adjust the 

minimum an,d the maximum markers. If a.n observation 
is less than (or equal to) the current minimum, then the 
observation b’ecomes the minimum, its 1oc:ation n1 re- 
mains 1, and the locations of all the other markers are 
incremented by 1. Similarly, if an observation is more 
than the current maximum, the fifth marker’s location 
is incremented by 1 (as always) and the locations of the 
other four markers remain unchanged. 

2. Successive markers must be kept at least one ob- 
servation away, that is, 

ni > ?Zi-1 i = 2, 3, 4, 5. 

Thus, a marker may not be moved if that would result 
in two markers being in the same position. 

3. The movement of markers to the left or to the 
right is always one position only. Thus, if a marker is 
off from its desired location by more than one position, 
the adjusting move is only one position. It must be 
noted that the desired locations nl are computed on a 
continuous (real) scale, while the actual locations ni are 
on a discrete (integer) scale. 

4. For the algorithm to work correctly, the marker 
heights must always be in a nondecreasing order, that 
is, 9i 2 9i-1. Therefore, if the P2 formula predicts a 
value which will make new 9i less than 9i-1 or greater 
than 9i+i, then the parabolic prediction is ignored and 0s 
linear prediction is used as follows. 

For a move by d positions (d = +l): 

@ = @ + d h+d - 9i) 
%+d - ni 

ni = ni + d. 

Again, positive values of d correspond to right moves and 
negative values to left moves. 

5. The first five observations are sorted and used to 
initialize the five marker values, and marker locations 
are initialized to 

?li = i i = 1, 2, . . . , 5. 

As is obvious by now, the marker 93 is the estimated 
quantile. An algorithmic description of the Pz algorithm 
is given in Box 1. 

Example. An example of median calculation using 
the P2 algorithm is shown in Table I (p. 1080-1081). The 
observations are from an exponential distribution with 
a mean of 10 (median = 6.931). The first five observa- 
tions 0.02, 0.5, 0.74, 3.39, and 0.83 are sorted and used 
to initialize the markers. 

The sixth observation is 22.37. It is greater than all 
five existing markers, and so it “fits after” the last 
marker. This is mentioned in point 1, above. The fifth 
marker is moved one position and its height becomes 
22.37. No further adjustment is necessary since all 
marker positions are in the desired range. 

The seventh observation of 10.15 fits after marker 4. 
Therefore, marker 5 is moved one position to the right. 
The desired marker positions are 1, 2.5, 4, 5.5, and 7. 
Markers 3 and 4 are off from their desired position by 
at least one. However, marker 3 cannot be moved at 
this point because it must remain at least one position 
away from its adjacent markers (condition ni > ni-1). 
Marker 4 does not have this problem. It is moved one 
position to the right; its new height 4.47 is calculated 
using the PZ formula. 
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The eighth observation of 15.43 again fits after 
marker 4 and results in the adjustment of markers 3 
and 4. This procedure is followed as long as new obser- 
vations are generated. 

4. PERFORMANCE OF THE P2 ALGORITHM 
The performance of the PZ algorithm is measured by 
how close the estimated quantile comes to the parame- 
ter being estimated. Given a set of n observations, let 
‘~~2 be the P2-quantile (the quantile calculated by the P2 
algorithm). Sort these n observations and take the 
[(n - I)p + 11th element; we call this the “sample- 
quantile” T,, or the quantile obtained by the order 
statistics. 

For random sequences (from a given distribution) 
both the P2-quantile and the sample-quantile would be 
random estimates of the parent quantile 8. In such 
cases, the goodness of an estimator is measured by its 
mean squared error, bias, consistency, and efficiency 
[4]. The following is a brief explanation of these four 
terms taken from [4], to which the reader is referred for 
details. 

In estimating a parameter ~9 by the statistic (or esti- 
mator) T, the difference T - 0 is called the error, and 
mean squared error (MSE) is E[(T - @‘I. 

The MSE can be decomposed into two parts: the vari- 
ance of the estimator and a nonnegative term: 

E[(T - 0)“] = var T + (E[Tj - 19)‘. 

The quantity E[T] - 6’ is called the bias in T, and an 
estimator with zero bias is said to be unbiased. 

The goodness of an estimator depends on the sample 
size, and it is reasonable to expect that the larger the 
sample, the better the inference one could expect to 
make. If the mean squared error of the estimator T, 
(based on a sample of size n) decreases to 0 as more and 
more observations are incorporated into its computa- 
tion; that is, if 

lim E[(Tn - 19)‘] = 0 
?l-m 

then the estimator is said to be consistent in quadratic 
mean. This holds, of course, if and only if both the 
variance of T, and the bias tend to 0 as n becomes 
infinite. 

If an estimator T has a mean squared error that is 
smaller than the mean squared error of another esti- 
mator T’ in estimating 8 from a given sample, the esti- 
mator T is thought of as making more “efficient” use of 
the observations. The relative efficiency of T’ with re- 
spect to T is the ratio 

All of the above criteria for goodness of an estimator 
are related to its mean squared error. We, therefore, 
choose MSE as our primary performance metric and 
compare a P2 estimate of a quantile with that obtained 
by sorting the observations. To estimate MSE, we gen- 
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Box 1 
P2 Algorithm: To calculate the p-quantile of 

(Xlr . . . , x,1 
A. Initialization: Sort the first five observations 

(xl, XZ, x3, x4, x51 and set 
Marker heights qi + X(i); i=1,...,5 
Marker positions ni + i; i = 1, . . . , 5 
Desired marker positions 

n[ t 1; ni c 1 + 2p; n; c 1 + 4p; 
n; c 3 + 2~; n; c 5; 

Note that n/ are real variables, while ni are 
integers. 
To reduce CPU overhead, calculate and store 
the increment dn,f in the desired marker posi- 
tions: 

dni t 0; dn$ c p/2; dn$ c p; 

dni t (1 + p)/2; dn; c 1; 

B. For each subsequent observation Xi, j > 6, per- 
form the following: 
1. Find cell k such that qk 5 Xj C qk+i and 

adjust extreme values (ql and qs) if neces- 
sary, that is, 

CASE of xi 

Ixi < %I 41 +Xj; k+ 1; 
[ql sxj<qz] kc!; 
[qz 5 xj < 931 k + 2; 
[qs 5 xi < q4] k + 3; 
[q4 C: Xj c q5] k c 4; 

[45 < xil 95 c Xj; k t 4; 
END CASE; 

2. Increment positions of markers k + 1 
through 5: 

ni+ni+l i=k,...,5 

Update desired positions for all markers: 

n[cn,!+dn/ i=1,...,5 

3. Adjust heights of markers 2-4 if necessary: 
FORi=2TO4DO 

BEGIN 
d; c n,f - ni 
IF ((d, z 1 and ni+r - ni > 1) or 

(di 5 -1 and n+1 - ni C -1)) 
BEGIN 

di + sign(di) 
Try adjusting qi using Pz formula: 
q[ t qi from parabolic formula 
IF Iqi-1 < ql C qi+l I 
THEN qi + qi 
ELSE use linear formula: 

qi t qi from linear formula; 
vi t ni + di, 

END IF; 
END DO; 

C. Return q3 as the current estimate of p-quantile. 
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TABLE I. An example of median calculation using P’ Algorithm 
‘~~~~~~~.’ :;: “’ 

af@@e&&$ation j 

‘, : Desired 

,Le: , I marker positions 

- 6 122.37 5 12 3 4 6 1.00 2.25 3.50 4.75 6.00 
7 to.15 4 1 2 3 4 7 1 .oo 2.50 4.00 5.50 7.00 
8 15.43 4 1 2 3 5 8 1.00 2.75 4.50 6.25 8.00 
9 i38.62 5 1 2 4 6 9 l.QO 3.00 5.00' 7.00 9.00 

10 'I $92 4 13 5 7 10 1 .oo 3.25 5.50 7.75 10.00 
11 l34.60 4 13 5 7 11 1.00 3.50 6.00 8.50 11.00 
12 '10.28 3 13 6 9 12 1.00 3.75 6.50 9.25 12.00 
13 1.47 2 13 7 10 13 1 .oo 4.00 7.00 10.00 13.00 
14 0.40 1 15 8 11 14 1.00 4.25 7.50 10.75 14.00 
15 0.05 1 16 9 12 15 1 .oo 4.50 8.00 11.50 15.00 
16 '11.39 3 1 5 8 13 16 1.00 4.75 8.50 12.25 16.00 
17 0.27 1 16 9 14 17 1.00 5.00 9.00 13.00 17.00 
18 0.42 1 1 6 10 14 18 1 .oo 5.25 9.50 13.75 18.00 
19 0.09 1 1 7 11 15 t9 1.00 5.50 10.00 14.50 19.00 
20 11.37 3 1 6 10 16 20 1.00 5.75 10.50 15.25 20.00 

erate T random samples of size n each from a probabil- 
ity distribution with a known populationquantile 0; we 
calculate the sample-quantile Tsi and the P2-quantile 
Tpzi for the ith set. The MSE for the sample-quantile is 
then empirically estimated to be 

Similarly, M:SE for the P2-quantile is estimated to be 

Figure 3 shows MSE’s for medians of four different dis- 
tributions: exponential, normal, log-normal, and uni- 
form. Each curve is based on 50 samples of the given 
distribution. Similar curves were obtained for O.lO-, 

0.9@, o.%-, and 0.9%quantiles of these distributions. 
For all cases, the MSE of the P*-quantile is comparable 
to that obtained by order statistics and that both tend to 
zero as sample size is increased. 

Figure 4 (p. 1082) shows the relative efficiency 
(MSEJMSErz) of the P*-quantiles with respect to the 
sample-quantiles. For all cases tested, the P2-quantiles 
seem to be almost as efficient as the sample-quantiles. 

Figure 5 (p. 1083) shows the MSE curves for a s-point 
discrete distribution. The purpose of this figure is to 
show that the P* algorithm works for noncontinuous 
distributions. (The algorithm works perfectly on con- 
stant sequences.) However, if the number of possible 
values the distribution can take is small, one may ob- 
tain better quantile estimates by keeping a count for 
each value than by using P*. Also, we do not recom- 

Graph 1 Graph 2 

FIGURE 3. Mean squared error (ME) for medians. The ME’s for the medians estimated by the p? algorithm and the order statistics 
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calculation using P*Algorithm 

Adjust Newmarker New marker 
markers positions heights 

1 2 3 4 6 0.02 0.15 0.74 0.83 22.37 
4 1 2 3 5 7 0.02 0.15 0.74 4.47 22.37 

3 4 1 2 4 6 8 0.02 0.15 2.18 8.60 22.37 
2 3 4 .l 3 5 7 9 0.02 0.87 4.75 15.52 38.62 

1 3 5 7 10 0.02 0.87 4.75 15.52 38.62 
3 4 1 3 6 8 11 0.02 0.87 9.28 21.58 38.62 

1 3 6 9 12 0.02 0.87 9.28 21.58 38.62 
2 1 4 7 10 13 0.02 2.14 9.28 21.58 38.62 

1 5 8 11 14 0.02 2.14 9.28 21.58 38.62 
2 3 1 5 8 12 15 0.02 0.74 6.30 21.58 38.62 

1 5 8 13 16 0.02 0.74 6.30 21.58 38.62 
2 4 1 5 9 13 17 0.02 0.59 6.30 17.22 38.62 

1 6 10 14 18 0.02 0.59 6.30 17.22 38.62 
2 3 1 6 10 15 19 0.02 0.50 4.44 17.22 38.62 

1 6 10 16 20 0.02 0.50 4.44 17.22 38.62 

mend using the algorithm for distributions with discon- these features one by one and analyze the impact on 
tinuities close to the quantile being computed. the performance. 

5. FEATURES OF THE Pz ALGORITHM 
COMPARED WITH ALTERNATIVE DESIGNS 
The P2 algorithm produces estimates close to those ob- 
tained by order statistics. It evolved after a series of 
trials with other similar designs. In this section, we 
briefly describe those designs and their observed per- 
formance. We justify the current choice of features of 
the P2 algorithm. 

The three key features of P2 are: five markers, cen- 
trally located middle markers, and the piecewise- 
parabolic prediction algorithm. Let us now change 

Graph 3 Graph 4 

5.1 Three Markers 
Suppose we use only three markers instead of five, 
without changing the remaining features in the P* de- 
sign. We locate the markers at the minimum, the p- 
quantile. and the maximum. The second marker is ad- 
justed whenever its position differs from the desired 
location by more than one. The new value is predicted 
as a parabolic function of the. minimum, the p-quantile, 
and the maximum. This design gives much larger er- 
rors than the five marker design. 

Another weakness of this design is that a single out- 
lier observation may cause the error to jump to a large 

are indicated by p? and 0, respectively. In each case, MSE was calculated from 50 samples of the given size. 
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SNlPLE SIZE 

d.l0-quantiles 
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Graph 1 Graph 2 
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Graph 3 Graph 4 

ftelative efficiency of P-quantiles with respect to tho!;c 
obtained by order statistics. Relative efficiency is defined as the 
ratio of YSE for sample-quantiles and MSE for P-quantiles. The 
following four distributions are shown: E = exponential with mean 
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value. This is due to the fact that for many statistical 
distributions, the minimum and maximum are statisti- 
cally “unbounded” variables in the sense that they gen- 
erally do not attain a stable value as the number of 
observations increases. Therefore, a single outlier can 
cause a sudden jump in the maximum or minimum 
value; that is immediately reflected in the predicted 
value of the quantile. Putting two more markers around 
the quantile makes the algorithm less susceptible to 
extreme values. A sudden jump in the maximum 
causes a small jump in the fourth marker and still a 
smaller jump in the quantile. Thus, the middle-markers 
in the P2-design serve as “outlier guards.” 

Interestingly enough, despite the reduced accuracy, 
the three marker algorithm does not necessarily entail 
less computation. In fact, in many cases the three 
marker algorithm results in more frequent adjustment 
of markers than the five marker algorithm, and thus 
consumes more CPU time. 

It is possible to increase the accuracy by using seven 
(or more] markers. Extension of P2 to a higher number 
of markers is straightforward. Such a design, however, 
requires considerable increase in CPU time as well as 
storage overhead. In our empirical tests, five markers 
were found to give sufficient accuracy (as demonstrated 
in Section 4). 

5.2 Noncentral Middle Markers 
In the Pz algorithm, the two additional markers are 
kept at p/2- and (1 + p)/Z-quantiles, exactly halfway 
between the minimum and the desired quantile, and 
between the quantile and the maximum. When these 
markers are moved closer to the p-quantile marker (say 
at 30 percent and 70 percent for the median), the vari- 
ance of the quantile estimators increases and, in the 
limit, when the two markers are in locations adjacent 
to the quantile, the algorithm behaves similarly to the 

! I 00 

SAMPLE SIZE 

three marker algorithm, that is, it becomes outlier- 
sensitive. If the points are moved closer to the bound- 
aries (minimum and maximum), their variance (and 
hence the variance of the quantile estimator) increases 
until finally the algorithm again tends to behave like 
the three marker algorithm. 

Although any five marker algorithm is superior to 
the three marker design regardless of where the middle 
markers are placed, the central location of middle 
markers between the quantile and the extremes (mini- 
mum or maximum) was empirically found to be the 
best. 

5.3 Linear Prediction 
In the P2 algorithm, the curves passing through any 
three adjacent markers are taken to be parabolic. What 
happens if a linear prediction is used instead? Our ex- 
periments show that the error increases; this result can 
be explained as follows: the curve passing through the 
markers is really the cumulative distribution function. 
For different distributions, this curve is different. A 
piecewise-parabolic curve provides a second-order ap- 
proximation. For most distributions (including discrete 
distributions), this is considerably better than a piece- 
wise linear curve. On the same principle, it follows that 
a piecewise cubic prediction may provide a better ap- 
proximation than a parabolic prediction. However, fit- 
ting a cubic curve is quite cumbersome and the im- 
provement is not worth the cost. Thus, the piecewise- 
parabolic prediction provides a good trade-off between 
complexity and accuracy. 

As with the three marker algorithm, the piecewise 
linear prediction does not necessarily save computa- 
tion. In fact, in most cases, the piecewise linear predic- 
tion results in more frequent adjustments of markers 
than the Pz design and, thus, consumes more CPU time. 

Figure 6 shows the relative efficiency in median 

Exponential 
2.0 

Mesrs=i, Medm-&l.69315 
, 

FIGURE 5. Mean squared error (ME) in median estimation for a FIGURE 6. Relative efficiency of P* algorithm and alternative 
discrete distribution. The variables take three values: 0 with designs with respect to median estimation using order statistics. 
probability 0.45, 1 with probability 0.10, and 2 with probability 0.45. The p2 design appears statistically most efficient. 

October 1985 Volume 28 Number 10 Communications of the ACM 1083 



Research Contributions 

Box 2 

P2 Algorithm: To calculate a b-cell histogram of 
{Xl, . I &I 

A. Initialization: Sort the first b + 1 observations 
{xl, x2, . , xb+] ] and set 
Marker heights 9i c- ~(~1; 

Marker positions ni +- i; i=ll,...,b+l 

B. For each subsequent observation x,, i 2 b + 2, 
perform the following: 

1. Find cell k such that 9k I xj < 9k+l and 
adjust extreme values (9% and 9b+l) if nec- 
esaary, that is, 

CASE OF Xj 

k;<911 : 91 +Xj; k+ 1; 
[qi 5 Xj < 9i+l] :kci,i=l,...,b-1; 
[@~xj~qb+l] :k+-b; 

[911+1 c q] : +,+I ‘--xi; k + b; 
END CASE; 

2. Increment positions of markers I; + 1 
through b + 1: 

ni+nj+l i=k+l,...yb+l 

3. Adjust heights of markers 2-b if necessary: 
FOR:i=2TObDO 

BEGIN 
Calculate desired marker position 
n’ c 1 + (i - l)(n - 1)/b;* 
di=n’-ni 
IF ((di 2 1 and n,+l - ni > 1) or 

(di 5 - 1 and ni-1 - n; < -1)) 
BEGIN 

di c sign(di) 
Try adjusting 9; using P2 formula: 
qf c 9i from parabolic formula 
IF h-1 < 9l <: 9i+1I 
THEN 9; + 9; 
ELSE use linear formula: 

9j c 9i from linear formula; 
ni+ni+di; 

END IF; 
END DO; 

C. A plot of ni/n on y-axis and 9i on x-axis gives 
the cumulative histogram. 

s Note: Some savings in CPU time may be obtained (at the cost of 
increased storage) by calculating increments in desired marker posi, 
tions during initialization and maintaining separate counters for the 
desired positions. Also note that n’ is a real variable. while n, are 
integers. 

computation for an exponentially distributed random 
variable using the above variations of the P2 design. 
This figure clearly shows that the Pz design has the 
highest relative efficiency among these variants. As dis- 
cussed in Section 4, high relative efficiency implies low 
mean squared error. 

6. THE P2 ALGORITHM FOR HISTOGRAMS 
A common problem in plotting histograms of data is 
choosing proper cell size. If the cells are too narrow, 
enough observations may not fall in some cells. If cells 
are too wide, information is lost and the histogram does 
not show sufficient detail. One way to circumvent this 
problem is to use equiprobable cells. Particularly when 
the aim is to fit a distribution function, equiprobable 
cells are better than equal-size cells [l]. 

To plot a histogram using b equiprobable cells, all we 
need are values of b - 1 quantiles; namely, the l/b-, 
2/b-, 3/b-, . (b - 1)/b-quantiles, along with the mini- 
mum and maximum. Thus, one way to calculate histo- 
grams would be to dynamically calculate these quan- 
tiles using the P2 algorithm. Each quantile would re- 
quire its own set of five markers. Although the space 
and time requirements for this method would not be 
large, an even more efficient and accurate method is 
obtained by adapting the design as follows. 

To plot a b + 1 point histogram, we make b cells 
bounded by b + 1 equidistant markers with values 
equal to the current estimates of the minimum, 
l/b-quantile, 2/b-quantile, . (b - 1)/b quantile, and 
the maximum (see Figure 7). The first b + 1 observa- 
tions are sorted to initialize these b + 1 markers. Then, 

LLL 91 92 q3 lb-l ‘lb+1 

nl=l n2 n3 nb-1 nb nb+i=n 

FIGURE 7. The p algorithm for calculating a b-cell histogram. 
This design consists of maintaining b + 1 equidistant markers with 
their heights corresponding to the minimum, l/b-quantile, 2/b- 
quantile, . . . , (b - 1)/b-quantile, and the maximum. 
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FIGURE 8. The p? formula assumes a piecewise-parabolic curve 
passing through three adjacent markers. 

as a new observation comes in, we increment the loca- 
tions of markers higher than the observation. 

If any marker deviates by more than 1 from the de- 
sired position, its position is adjusted. A parabola pass- 
ing through the two adjacent markers and this marker 
are then used to adjust the marker. An algorithmic 
description of the method to obtain a cumulative histo- 
gram is given in Box 2. 

7. CONCLUSION 
In this article, we have proposed a heuristic algorithm 
for estimating quantiles. The estimates produced are 
generally as good as those obtained by order statistics, 
that is, by storing all observations and then sorting 
them. The advantage of the P’ algorithm is that obser- 
vations need not be stored and no prior knowledge of 
the range of values is required. 

The storage requirement of the proposed algorithm is 
small and fixed, regardless of the number of observa- 
tions. Thus, it opens a way for the construction of a 
“quantile chip” to be used in industrial controllers and 
recorders. 

The P2 algorithm has further been extended to pro- 
duce histograms. If many quantiles are desired, the cal- 
culation of complete histograms is more accurate and 
computationally more efficient. 

APPENDIX 
Derivation of the Pz Formula 
As shown in Figure 8, the P2 formula assumes that the 
curve passing through (ni-1, qi-l), (n;, qi), and (ni+l, qi+l) 

is a parabola of the form 

y = llx2 + bx + c 

where (x, y) are coordinates (n, 4). The coefficients II, b, 
and c can be determined by solving the following three 
equations: 

qi-1 = UTZ:-, + bni-1 + C. (1) 

9i = ~nj! + bni + C. (2) 

9i+l = UH;+~ + bni+l + C. (3) 

Once a, b, c have been determined, it is straightforward 
to show that the ordinate at x = n,! = ni + d is 

91 = ani’ + bn[ + c. (4) 

91 = 9i + d 
ni+l - G-1 

(5) 

. 
[ 
(ni - ni-1 + d) E + (ni+l - ni - d) !E!@ 

I 7Zi - ni-1 1 . 

This is the P2 formula. 
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