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Two efiicient algorithms for enclosing a zero of a continuous function are presented. They are

similar to the recent methods, but together with quadratic interpolation they make essential use

of inverse cubic interpolation as well. Since asymptotically the inverse cubic interpolation is

always chosen by the algorithms, they achieve higher-efficiency indices: 1.6529 . . . for the first

algorithm, and 1.6686 . . . for the second one. It is proved that the second algorithm is optimal in

a certain family. Numerical experiments show that the two new methods compare well with

recent methods, as well as with the efficient solvers of Dekker, Brent, Bus and Dekker, and Le.

The second method from the present article has the best behavior of all 12 methods especially

when the termination tolerance is small.
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1. INTRODUCTION

In a recent paper, Alefeld and Potra [1992] proposed three efficient methods

for enclosing a simple zero x * of a continuous function ~. Starting with an

initial enclosing interval [al, b ~] = [a, b], the methods produce a sequence of
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intervals {[ a., b. ]~. ~, such that

X* = [%+l)k+l 1 G[czn, bnl c ““” g[al, bll=[a, bl (1)

lim (b. –a. ) = O. (2)
n~~

The asymptotic efficiency indices of each of the three methods in the sense

of Ostrowski [1973] are 2112 = 1.4142 ..., 41/3 = 1.5874 ..., and ((3 +

(131’2))/2)1/3 = 1.4892 ..., respectively. Subsequently, Alefeld et al. [1993]

improved the methods of Alefeld and Potra and obtained two new enclosing

methods having asymptotic efficiency indices (1 + (21’2 ))1/ 2 = 1.5537 and

(1 + (51/2))/2 = 1.6180 ..., respectively. The numerical experiments pre-

sented by Alefeld et al. show that the five methods mentioned above are

about as efficient as the equation solvers of Brent [1972], Dekker [1969], and

Le [1985]. The second method in Alefeld et al. has the best behavior of all

eight methods.

Although there are many enclosing methods for solving the equation

f(x) = o, (3)

where f is continuous on [a, b ] and has a simple zero x * in [a, 6], most of

them do not have nice asymptotic convergence properties of the diameters

{(b. – an )X.1. For example, in case of Dekker’s method, the diameters b. – a,
may remain greater than a relative large positive quantity until the last

iteration when a “&step” is taken. In case of Le’s [ 1985] Algorithm LZ4, the

convergence properties of {( b. – a.)};. ~ have not been proved except that the

total number of function evaluations is bounded by four times of that needed

by the bisection method, which is also an upper bound for the number of

function evaluations required by the second method to be presented in this

article.

Bus and Dekker [ 1975] published two improved versions of Dekker’s [1969]

method and proved that the upper bounds of the number of function evalua-

tions are four or five times of that needed by the bisection method. However,
for those two methods, as well as for Brent’s method, the Illinois method, the

Anderson-Bjorck method, Regula Falsi, Snyder’s method, the Pegasus method,

and so on, only the convergence rate of {1x. – x * 1~. ~, where x. is the

current estimate of x*, has been studied and not the convergence rate of the

diameters (b, – a.). However, finding the rate of convergence of the sequence

of the diameters is extremely important because in most algorithms for

solving nonlinear equations the stopping criterion is constructed in terms of

the diameter of the enclosing interval.

In case f is convex on [a, b], the classical Newton-Fourier method

[Ostrowski 1973, p. 248], Schmidt’s [ 1971] method and the methods of

Alefeld and Potra [1988] produce a sequence of enclosing intervals whose

diameters are superlinearly convergent to zero. The highest asymptotic effi-

ciency index of those methods, 1.5537 ..., is attained by a method of Schmidt

and a slight modification of this method due to Alefeld-Potra. The convexity

assumption was eventually removed in the methods of Alefeld and Potra
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[1992], and the methods of Alefeld et al. [1993]. The second method in Alefeld

et al. achieves the efficiency index (1 + (51/2 ))/2 = 1.6180 . . . which was, up

to that moment, the highest efficiency index for a general nonlinear equation

solver with superlinear convergence of the diameters of the enclosing inter-

vals and without any convexity requirements on f. The methods of Alefeld

and Potra [1992] and Alefeld et al. are based on “double-length secant steps”

and on appropriate use of quadratic interpolation and are briefly described in

the next section.

We propose two methods which further improve the methods of Alefeld et

al. [1992]. The improvements are achieved by employing inverse cubic inter-

polation instead of quadratic interpolation whenever possible. We show in

Section 5 that asymptotically the inverse cubic interpolations will always be

chosen by the algorithm. Our first method requires at most 3 while our

second method requires at most 4 function evaluations per iteration. Asymp-

totically our first method requires only 2 and our second method only 3

function evaluations per iteration. For our first method, {(b. – a~)}~. ~ con-

verges to zero with R-order at least 1 + (31/2) = 2.732. , , , while for our

second method {( bm – a~)}~. ~ converges to zero with R-order at least 2 +

(71/2) = 4.646 . . . . Hence the corresponding efficiency indices are (1 +
(31/z))V2 = 1.6529 . . . and (2 + (71/2 ))1/3 = 1.6686 ..., respectively. We also

show that our second method is optimal in a certain class of algorithms.

Section 3 describes our subroutine for inverse cubic interpolation, and

Section 4 presents the major algorithms of this article. In Section 5 the

convergence results are proved, and in Section 6 numerical experiments are

presented. We compare the two methods of this article with the methods in

Alefeld and Potra [1992] and Alefeld et al. [1993], with the methods of Brent

[1972] and Dekker [1969] which are used in many standard software pack-

ages, with the Algorithms M and R of Bus and Dekker [1975], and with the

Algorithm LZ4 of Le [1985]. The numerical results show that the two meth-

ods of the present article compare well with the other 10 methods. The second

method in this article has the best behavior among all methods especially

when the termination tolerance is small.

2. SOME RECENT ENCLOSING METHODS

In this section we briefly describe the recently developed enclosing algorithms

of Alefeld and Potra [1992] and their improvements proposed by Alefeld et al.

[1993] for enclosing a simple zero x* of a continuous function ~ in [a, 6]

where f(a)fl b) <0. In all, there are three methods proposed in Alefeld and

Potra and two methods proposed in Alefeld et al. “Double-length secant step”

is used by all five methods, and quadratic interpolation techniques are

applied in all but the first method of Alefeld and Potra. In the present article

we call those methods Algorithms 2. 1–2.5 and summarize their asymptotic

convergence properties in the following table, where NFM stands for “the

maximum number of function evaluations required per iteration,” NFA for

“the number of function evaluations required asymptotically per iteration,”
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and AEI for “asymptotic efficiency index” (the values of AEI are rounded to

the given number of digits).

Algorlthm Method NFM NFA AEI

2.1 Method 1 of Alefeld and Potra [ 1992] 3 2 1.4142

2.2 Method 2 of Alefeld and Potra [ 1992] 4 3 1.5874

2,3 Method 3 of Alefeld and Potra [1992] 3 3 1.4892

24 Method 1 of Alefeld et al. [ 1993] 3 2 1.5537

2.5 Method 2 of Alefeld et al. [ 1993] 4 3 16180

We first list out two subroutines that are called by Algorithms 2. 1–2.5 as

well as by Algorithms 4.1 and 4.2 in Section 4. We assume throughout that f

is continuous on [a, b] and that ~(cz)~( b) <0. We consider a point c = (a, b).

Subroutine bracket(cz, b, c, d, 6) (or brczck.et(cz, b, c, ii, ~, d))

If ~(c) = O, then print c and stop;

If ~(cz)f(c) <0, then ti = a, ~ = c, (cl = b);

If flb)f(c) <0, then d = c, ~ = b, (d = a).

After calling th~ above subroutine, we will have a new interval [ ti, ~] c

[a, b] with f(ti)~(b) <0. Furthermore, if bracket(a, b, c, ti, ~, d) is called,

then we will have a point d @ [Z, ~] such that if d < E then f(?i)f(d) > O;

otherwise f(d)f(~) >0.

Subroutine Newton-Quadratic(a, b, d, r, k)

Set A =~[a, b,d], B =~[a, b];

If A = O, then r=a –B’l~(a);

If A~(a) >0, then r. = a, else r. = b;

Fori=l,2, . . ..k do.

P(r, -l)

“=r’-l - P’(r, _l)
(4)

B(r, -l)
=r, _l—

B+ A(2r, _1–a–b)

r=rk,

The above subroutine has a, b, d, and k as inputs and r as output. It is

assumed that d @ [a, b] and that f(d)f(a) > 0 if d < a and f(d)f(b) > 0 if

d > b. k is a positive integer, and r is an approximation of the unique zero z

of the quadratic polynomia 1,

P(x) =P(a, b,d)(x) =f(a) +f[a, b](x –a) +f[a, b,dl(x –a)(x –b)

in [a, b] where f[a, b] = (f(b) – f(a)) /(b – a), and f[a, b,d] = (f[b, d] –

f[a, bl)/(d - a); note that P(a) = ~(a) and P(b) = f(b). Hence P(a)P(b) <0.
The following five algorithms describe the methods in Alefeld and Potra

[1992] and -Mefeld et al. [19931, where I.L <1 is a positive parameter which is
usually chosen as p = 0.5.
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Algorithm 2.1 (Alefeld and Potra [19921)

setal=a, bl=b, forn=l,2, . . . . do:

2.1.1 c. = an – f[a,, b.]-lf(a~);

2.1.2 call bracket(a~, bn, c~, tin, ~~);

2.1.3 if If(tin)l < lf(~n)l, then set u. = tin, else set u. = ~~;

2.1.4 set E. = u. – 2f[tin, zn]-lf(7.4n);

2.1.5 if IF. – u.I > 0.5(~. – cZ.),

then t. = 0.5(~~ + H.), else ~~ = ~~;

2.1.6 call bracket(ti~, ~~, 2., d., $~);

2.1.7 if h. – 6.< p(bn – an),

then a~+l =ii~, bn+l =8.,

else call bracketed., ~~, 0.5(6. i- $~), a.+ ~, b.+ ~).

Algorithm 2.2 (Alefeld and Potra [ 19921)

setal=a, bl=b, forn=l,2, . . . do:

2.2.1 c. = an – f[a~, b.]-lf(a.);

2.2.2 call bracket(a., bn, c., 6., ~~);

2.2.3 E. = the unique zero of P(a~, b., c.)(x) in [ii., b.];

2.2.4 call bracket(6n, ~m, E., E,, ~~);

2.2.5-2.2.9: same as 2.1.3-2.1.7.

Algorithm 2.3 (Alefeld and Potra [ 19921)

setal=a, bl=b, forn=l,2, . . . do:

2.3.1 c. = 0.5(an + bn);

2.3.2-2.3.6: same as 2.2.2-2.2.6;

2.3.7 call bracket(d~, ~~, ?., an+ ~, b~+l).

Algorithm 2.4 (Alefeld et al. [1993])

2.4.1 set al = a, bl = b, c1 = al –f[al, bl

2.4.2 call bracket(al, bl, cl, az, bz, dz);

Fern =2,3,..., do:

2.4.3 call Newton-Quadratic( a~, b., dn, c.

2.4.4 call bracket(a., b., c~, Z., ~., ~.);

‘l f(al);

2);
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Algorithm 2.5 (Alefeld et al. [1993])

2.5.1-2.5.2: same as 2.4.1-2.4.2;

Fern =2,3,..., do:

2.5.3 call Newton-Quadratic( a., b., d., c., 2);

2.5.4 call bracket(a., b., c~, 6., ~~, d.);

2.5.5 call Newton-Quadratic( &., ~., d., 6., 3);

2.5.6 call bracket(ti~, ~,, t., Z., ~~, ~~);

2.5.7-2.5.11: same as 2.4.5-2.4.9.

3. A BASIC SUBROUTINE

In this section we describe a subroutine for approximating a zero of f by

using the inverse cubic interpolation. This subroutine will be called by the

algorithms described in the next section. Assume that f is continuous on a

closed interval 1, that f has a zero in 1, and that a, b, c, d are four numbers

in 1. If f(a), f(b), f(c), and f(d) are four distinct values, then the inverse
interpolation polynomial at (a, f(a)), (b, f(b)), (c, f(c)), and (d, f(d)) is given

by the formula

w(y) = a + (y – f(a))f-l[ f(a), f(b)l

+(y –f(a))(y –f(b))f-l[ f(a), f(b), f(c)] (5)

+(y – f(a))(y – f(b))(y – f(c)) f-l[f(a), f(b), f(c), f(d)],

where

b–a
f-’[f(a), f’(b)l =

f(b) -f(a) ‘

f-’[f(a), f(b), f(c)l =
f-’[f(b), f(c)] -f-’[f(a), f(b)l

f(c) – f(a)
,

and

f-’[f(a), f(b), f(c), f(d)] =

f-’[f(b), f(c), f(d)] -f-’[f(a), f(b), f(c)l

f(d) - f(a)

Notice that the polynomial Ill y) in (5) can always be constructed as long as

f(a), f(b), f(c), and f(d) are distinct, even if f is not invertible. Then we may
always compute Z = 1P(O), which is an “approximate solution” of f(x) = O

although 1 may lie outside of 1. We are interested in the case where f(a),

f(b), f(c), and f(d) are distinct and where 2 is in 1. We will prove that this

will always happen asymptotically.

In case f is continuously differentiable with f‘( x ) # O for all x ● 1 and

f(a)f(b) <0 for some [a, b] c 1, f-l(x) exists, and a simple root X* of
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f(x) = O lies in [a, b]. In this case, if we further assume that f(4)(x) exists

and is continuous on 1, then

\I -X* I = 1P(O) -f-’(o)l

l[f-’(Y)](4)l (6)

< If(a) llf(b)ll f(c) llf(d)l ‘axy= f(~) ~!

Since

[f-w)](4)
lof’(x)f’’ (x) f’’’(x) – 15[f’’(x)]3 – [f ’(x)] 2f@Kx)

.

[f’(x)]’

for all y = f(l) with x = ~-l(y) G 1, we deduce that

II - x* I S Mlf(a)llf(b)ll f(c)llf(d)l, (7)

where

10 Tfl M2 M3 + 15M~ + M;M4
M= (8)

(ml)’

with Ml = max ZGI If ’(x)l, M2 = maxx=~ If’’(x)l, M3 = max XG1 lf’’’(~)l, M4

= maxz=~ lf(4)(x)l, and ml = min2e I If ‘(x)l. We mention that ml >0 be-
cause 1 is assumed to be a closed interval. The following procedure for

calculating Z = 1P(O) is a slight modification of the Aitken-Neville interpola-

tion algorithm that avoids unnecessary roundoff errors, as described in Steer

and B~lirsch [1980].

Subroutine ipzero(a, b, c, d, X)
set

Q,, = (c -d)
f(c)

f(d) - f(c) ‘

f(b)
Q21 = (b ‘C)

f(c) -f(b) ‘

f(a)
Q.l = (a – b)

f(b) - f(a) ‘

f(c)
Dzl = (b ‘C)

f(c) -f(b) ‘

f(b)
D,l = (a – b)

f(b) -f(a) ‘

Q22 = (D21 – Qn) f(d;:;(b) ,

ACM Transactions on Mathematical Software, Vol 21, No. 3, September 1995
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Q32 = (D31 – Q21) ~(c;:;(al ,

f(c)
D32 = (D31 – Q21)

f’(c) - f(a) ‘

Q33 = (D32 – Qn)f(d;(:;(a) ,

z = a + (Q~l + Q32 + Q33), end

4. ALGORITHMS

In this section we present two algorithms for enclosing a simple zero x * of a

continuous function ~ in [a, b] where f(a)f( b ) < 0. These two algorithms are

improvements of Algorithm 2.4 and Algorithm 2.5. They call the subroutines

bracket and Newton-Quadratic as described in Section 2, as well as the

subroutine ipzero from the previous section. The basic idea is that we will

make use of Z = 1P(O) whenever it is computable and lies inside the current

enclosing interval, which is always the case asymptotically. The first algo-

rithm requires at most 3 while asymptotically 2 function evaluations per

iteration, and the second algorithm requires at most 4 while asymptotically 3

function evaluations per iteration. Under certain assumptions the first algo-

rithm has an asymptotic efficiency index (1 + (31’2 ))1/2 = 1.6529 ..., and the

second algorithm has an asymptotic index (2 + (71’2 ))1’3 = 1.6686 . . . . We

also show that in a certain sense our second algorithm is an optimal proce-

dure. In the following algorithms, v < 1 is a positive parameter which is

usually chosen as LL = 0.5.

Algorithm 4.1

4.1.1 set al = a, bl = b, c1 = al – f[czl, bll-lf(al);

4.1.2 call bracket(al, bl, cl, az, bz, d2);

Forn=2,3,... j do:

4.1.3 if n = 2 or ~l.j(f, – L) = O where fl = flcz.), f2 = f(b,),

fs = f(d.1 and f~ = f(e.),

then call Newton-Quadratic( a~, b., d., c., 2),

else

call ipzero(a~, b,, d~, e., c.),

if(c~ – a~)(c~ – b.) > 0

then call Newton-Quadratic( a~, b., d., c., 2),

endifi

4.1.4 call bracket(a., b., c,, Zi., %., ~,);

4.1.5 if If(?in)l < lf(%n)l, then set u. =

4.1.6 set ?. = u. – 2f[dn, znl-lf(un);

4.1.7 if IF. – Unl > 0.5(Tn – tin),

then t. = 0.5(~~ + d~), else t.

ACM TransactIons on Mathematical Software, VO1 21, No
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4.1.8 call bracket(~n, ~~, ;., h~, ~~, o?.);

4.1.9 if i. – tin < p(b. – a.),

then a~+l = dn, b~+l = ~~, d~ql =~n, e~+l =~~,

else

en+l = in,

call bracket(ti., b., 0.5(d~ + ~~), a~+l, b.+l, d.+ ~),

endif.

Algorithm 4.2

4.2.1-4.2.2: same as 4.1.1-4.1.2;

Fern =2,3,..., do:

4.2.3 if n = 2 or ll,~,(f, - L) = O where fl = f(a.), f~ = f(b~),

f~ = ild.), and f~ = ~(e.),

then call Newton-Quadratic( a., b., d., c., 2),

else

call ipzero(a., b., d~, en, c~),

if(c. – a.)(c. – b.) >0

then call Newton-Quadratic( a., b., d., c., 2),

endifi

4.2.4 set ;. = dn, call bracket(a~, bn, c., ii., ~~, ~~);

4.2.5 if ~,.~(fi – ~) = O where ~1 = ~(ii.), ~z = f(~.), ~~ = f(o?.),

f4 = f(~nl

then call Newton-Quadratic( ii., ~., ~., 6., 3),

else

call ipzero(iia, i., J., 6., 8.),

if (t. – 6n)(En – bn) 20

then call Newton-Quadratic( 6~, ~~, ~~, ;., 3),

endifi

4.2.6 call bracket(tin, ~., 6., tin, ~., ~,);

4.2.7-4.2.11: same as 4.1.5-4.1.9.

The following theorem contains a basic property of the above algorithms,

whose proof is straightforward and hence will be omitted.

THEOREM 4.3. Let f be continuous on [a, b], f(a) f( b) <0, and consider

either Algorithm 4.1 or Algorithm 4.2. Then either a zero off is found in a

finite number of iterations, or the sequence of the intervals {[a,, b. ]~. ~

satisfies both (1)and (2) where x * is a zero off in [a, b].

5. CONVERGENCE THEOREMS

From the previous section it is clear that the intervals ([ a., b.]};. ~ produced

by either Algorithm 4.1 or Algorithm 4.2 satisfy b.+ ~ – a., ~ < Wl(b. – a.)

for n >2, where PI = max{ ~, 0.5}. Since WI <1, that shows at least linear

ACM Transactions on Mathematical Software, Vol 21, No. 3, September 1995.
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convergence. In what follows we show that under certain smoothness as-

sumptions Algorithm 4.1 and Algorithm 4.2 produce intervals whose diame-

ters {( b,, – a.)~. ~ converge to zero with R-orders at least 1 + 31’2 = 2.732 . . .

and 2 + 71’Z == 4.646 ..., respectively. First, we have the following two lem-

mas.

LEMMA 5.1 (ALEFELD-POTRA [1992]). Assume that f is continuously differ-

entiable in [a, b], that f(a) f(b) < 0, and that x * is a simple root off(x) = O

in [a, b]. Suppose that Algorithm 4.1 (or Algorithm 4.2) does not terminate

after a finite number of iterations. Then there is an n~ such that for all

n > n~, 2. and u, in step 4.1.6 (or in step 4.2.8) satisfy

f(En)f(un) <0. (9)

LEMMA 5.2. Under the hypothesis of Lemma 5.1, assume that f is four

times continuously differentiable on [a, b]. Then:

(1) For Algorithm 4.1, there is rl >0 and nl such that c. in step 4.1.3 will
always be obtained by calling ipzero for all n > nl, and

lf(c~)l < rl(b. -a~)2(b~_1 -a~_l)’, ‘ifn > nl. ( 10)

(2) For Algorithm 4.2, there is rz >0 and nz such that c. in step 4.2.3 and t.

in step 4.2.5 will always be obtained by calling ipzero for all n > nz, and

lf(~.)1 <r,(b. -a.) ’(b. _l -a. _l)3, Vn>nz. (11)

PROOF. By Theorem 4.1, x, G (an, b.), and

ba–a. -O. (12)

Since x * is a simple zero, f ‘(x*) + O. Therefore, when n is big enough

f‘( x) # O for all x = [a,, b.]. For simplicity, we assume that f ‘(~) # O for all
x e [a, b]. With this assumption, f is strictly monotone on [a, b], and hence

f, (i = 1,2,3,4) in step 4.1.3 are four distinct values. Therefore, the subrou-

tine ipzero will always be called in step 4.1.3, and now we need only to prove

that c. calculated from ipzero satisfies C. = (a., b.) whenever n is large

enough.

From (7) we see that

/cn –x*

where M and M, are as

<M\ f(a~)]l f(b. )llf(d. )llf(e. )]
(13)

<M(Ml)4(b. – a.)z(b..l – a._l)2

iefined in (7) and (8) with the interval 1 replaced by
[a, b]. Since X*’G (a, b), there is an e >0 such that [x* – e, x’. + ~] ~
(a, b). Hence (13) and (12) imply that there is an fi such that

cne [x* – ~,x* + e] c(a, b), Vn > ii. (14)
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Therefore the following inequality

If(cn)l <Mllcn –X*I (15)

holds for n ~ fi, and as a result we have

If(cn)l < Mllcn – x.1 < M(iW1)4(bn – czn)(bn.l – an.l)zlf(an)l

as well as

If(cn)l < Mllcn - $* I s M(M,)4(bn - an)(bn_l - an_,)21f(bn)l,

Equation (12) enables us again to choose an nl > z such that cm ● (a, b) for

all n. > rzl and

l~(c~)l < min{l~(a~)l, lf(b~)l}, Vn 2 nl. (16)

Since ~ is strictly monotone over [ a, b], and f(a~)f(b~) <0, (16) implies that
c. ● (a., b~) whenever n > nl. Therefore c~ in step 4.1.3 will always be

obtained from ipzero for all n > n

(13) and (15) with rl = M(M1)5.

~, and now (10) follows immediately from

A similar argument can be applied to show that there is an nz such that c.

in step 4.2.3 and t. in step 4.2.5 will always be obtained from ipzero for all

n > nz. For n > nz we can write,

s MIMlf(tin)ll f($n)llf(Jn)ll f(~n)l

= MIMlf(an)ll f(bn)llf(cn)llf( dn)l

s (M1)4M(bn – C2n)z(bn.1– an-l) lf(cn)l

< (Ml)gkiwn–an)4(bn_1– an_1)3
which proves (11) with rz = (MI)9M 2. •l

The following two theorems show the asymptotic convergence properties of

Algorithm 4.1 and Algorithm 4.2, respectively.

THEOREM 5.3. Under the assumptions of Lemma 5.2, the sequence of

diameters {(b. – a.)};. ~ produced by Algorithm 4.1 converges to zero, and
there is an LI >0 such that

b <Ll(b. –a. )2( b~_l – a~_l)2,n+l —an+l — Vn =2,3,.... (17)

Moreover, there is an NI such that for all n > NI we have

Hence when n > Nl, Algorithm 4.1 requires only two function evaluations per

iteration.

PROOF. As in the proof of Lemma 5.2 we assume without loss of generality

that f’(x) # O for all x = [a, b]. Take NI such that NI > max{nl, n~}. Then
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by Lemma 5.1, (9) holds for all n > IVl. From steps 4.1.6-4.1.8 of Algorithm

4.1 and the fact that u., ii, ● [ 2., ~~] we deduce that

tn – dn < Izn – Unl, Vn >N1. (18)

From step 4.1.6 we also see that

li5n - Unl = 2f[tin, zn]-lf(un)

(19)

Af(un)l>
ml

where ml is as defined in (8) with the interval 1 replaced by [a, b]. Finally,

since c. = {ii., ~.}, we have that Ifl u.)1 < If’(c.)1. Combining that with (18)

and (19) we have

~n–tindlf(cn)l, ‘dn>N1.
ml

(20)

Now by Lemma 5.2, If(c,)l < rl(b~ – a~)2(b, _l – CZ.1)2, so that

Since {(b. – a~)~. ~ converges to zero, if NI is large enough then

I$n–&n < ~(b~ –a.), b’n >N1.

This shows that for all n > NI we will have a,+ ~ = an and b,+ ~ = &n. By

taking

{

(b )
LI > max ~rl,

n+l ‘an+l

ml (b. – a.)2(b. _l – a,_l)2 )

n=2,3, . . ..Nl

and using (21) we obtain (17). ❑

COROLLARY 5.4. Under the assumptions of Theorem 5.3, { c~~., = {(b. –

a.)~. ~ converges to zero with R-order at least 1 + 3~/2 = 2.732 . . . Since

asymptotically Algorithm 4.1 requires only two function evaluations per itera-

tion, its efficiency index is (1 + (31\2))112 = 1.6529 . . .

PROOF. By Theorem 5.3, {en};. ~ converges to zero, and En, ~ s Ll~$~~_ ~,

for n =2,3,...; and the result follows by invoking Theorem 2.1 of Potra

[ 1989]. ❑

THEOREM 5.5. Under the assumptions of Lemma 4.2, the sequence of
diameters {(b. – a,)}:. ~ produced by Algorithm 4.2 converges to zero, and

there is an L2 > 0 such that

b <L2(b~ –a. )4( b.. l —an-ln+l ‘an+l — )3, Vn =2,3,.... (22)

Moreover, there is an iV2 such that for all n > Nz we have

a n+l = &n and b~+l =g~.
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Hence when n > Nz, Algorithm 4.2 requires only three function evaluations

per iteration.

PROOF. The proof is about the same as that of Theorem 5.3. We assume

that ~’(x) # 0 for all x ● [a, b]. Take Nz such that Nz > max{nz, n~}. When

n > Nz then, as in the proof of Theorem 5.3, we have

$n–dn<:lf(En)l. (23)

Now by Lemma 5.2, lf(;~)l < ra(b~ – a~)4(b~_1 – a~_1)3. Therefore

The rest of the proof is similar to the corresponding part of the proof of

Theorem 5.3 and is omitted. ❑

COROLLARY 5.6. Under the assumptions of Theorem 5.5, {.s.}~. ~ = {(b, –

a~)]~= ~ converges to zero with R-order at least 2 + 7~j2 = 4.646 . . . . Since

asymptotically Algorithm 4.2 requires only three function evaluations per

iteration, its efficiency index is (2 + (71/2 ))1/3 = 1.6686 . . . . ❑

Next, we notice that Algorithm 4.2 is an optimal procedure in the following

sense. It is clear that Algorithm 4.2

4.2.3–4.2.4 in 4.2.5–4.2.6. If we repeat

of the form:

Algorithm 5.7

5.1.1-5.1.2: same as 4.2.1-4.2.2;

fern =2,3,..., do

5.1.3: same as 4.2.3;

5.1.4: set e~l) = d., call bracket(a~

improves Algorithm 4.1 by repeating

this k times, we will get an algorithm

, bn, cn, ail), b~l), d~l));

b.1.2k: set e~k-1) = d~k - 2), call bracket(a~k ‘2), b~k ‘2), c~k 2), a~k 1),
b(h-1~, d~h-l));

n

5.1.2k + 1:

if~,~~ (fi – ~) = O where ~1 = f(a$k-l)), j!2 = f(b~k-l)),

I!3 = f(d~~-lD, L = f(e$k -l)),

then call Newton-Quadratic( a~k- 1), b~k- 1), d~k - 1), E., k + 1),

else

call ipzero(a~k–l), b~k - 1), d~k– 1), e~k–l), E )n,

if (C. – a~k- 1))(6,, – b~k- 1)) >0

then call Newton-Quadratic( a~k 1), b~k- 1), d~k -1’, ;., k + 1),

endi~

5.1.2k + 2: call bracket(a~k-l), by-l), fin, tin, T., 7,);

5.1.2k + 3-5.l.2k + 7: same as 4.2.7-4.2.11.
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Algorithms 4.1 and 4.2 are special cases of Algorithm 5.7. Furthermore,

when k > 2, similar to Lemma 5.2, Theorem 5.3, and Theorem 5.5 we see

that for Algorithm 5.7,

(b n+l —an+l ) <Lh(b. –a.) 3k-2(b.-1–a. -l)3, n= 2,3 ,.. .

for some Lh >0. Hence when k >2 Algorithm 5.7 has the R-order at least

which is the positive root of the equation t2 – (3k – 2)t – 3 = O. Since

asymptotically Algorithm 5.7 requires k + 1 function evaluations per itera-

tion, the efficiency index is

when k > 2. In a straightforward manner it can be proved that Ih < Iz for all

k >2. Therefore, Algorithm 4.2 is optimal.

6. NUMERICAL EXPERIMENTS

In this section we present our numerical experiments comparing Algorithms

4.1 and 4.2 with Algorithms 2.1-2.5, with the methods of Dekker [1969] and

Brent [ 1972], with the Algorithms M and R of Bus and Dekker [1975], and

with the Algorithm LZ4 of Le [1985]. In our experiments, the parameter ~ in

Algorithms 2.1-2.5 and 4. 1–4.2 was chosen as 0.5. For Dekker’s method we

translated the ALGOL 60 routine Zeroin, presented by Dekker, into Fortran;

for Algorithms M and R of Bus and Dekker we did the same (i.e., we

translated into Fortran the ALGOL 60 routines Zeroin and Zeroinrat pre-

sented in Bus and Dekker); for Brent’s method we simply used the Fortran

routine Zero presented in the Appendix of Brent, while for the Algorithm LZ4

of Le we used his Fortran code. The machine used was an AT&T 3B2- 1000

Model 80, in double precision. The test problems are listed in Table I. The

termination criterion was the one used by Brent, i.e.,

b –a < 2.tole(a, b), (25)

where [a, b ] is the current enclosing interval, and

tole(a, b) = 2. Iul . macheps + tel.

Here u = {a, b} such that If(u)l = min{l ~(a)l, I f(b)l}; macheps is the relative

machine precision which in our case is 1.9073486328 X 10 – 16, and tol is a

user-given nonnegative number.
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Table I. Test Problems

# function f(z) [a,b] parameter I
1 sinx - x/2 [rr/2, rr]

2 20
–~zt=l(z~ – 5)2/($ – ~2)3 [an, b~]

an = n2 + 10-9

I

bn = (n+ 1)2 – 10–9 n = 1(1)10

3 azeb’ [-9,31] a=–40, b=–l

a= –lOO, b= –2

a = -2oo, b= –3

4 Z’-a [0,5] a = 0.2, 1, n = 4(2)12

[-0.95,4.05] a = 1, n = 8(2)14

5 sinx – 0.5 [0, 1.5]
c 9To–n - ?.–n. L t ro. 11 ~ = 1(1)5.20(mllnn“ -.Q u e. , “(-”,.””

7 [1 +(1 - n)2]x : ~1 – nx)2 i ~o;lj n = 5~10,20
8 # - (1 – o.)n I [n 11 n = 2,5,10,15,20

9 [1+(1 –n~]x–(1–nx)’ ! ,20

10 e-nx(r - 1) 4 Yn
./, ,?

I ;O’li l?J=151r11.F70

11 (nx - I)/((n - 1)x) I [0.01, lj n = 2,5, 15, 2(I

k- -) 1— L“, -,

1 [0.11 I n=l.2.4.5.8.15.

\--/l- 1 ,-7 -, I -, -,_.,..,_-
. . . . . . 4

12 X: –n; [1,100] n = 2(1)6, 7(2)33

13
0 ifz=O
~e-z—z [-1,4]

otherwise

14 &Jfi+sin~-1) if~>o
~ otherwise

[-104,=/2] n = 1(1)40
20

f e - 1.859 2x1o-Sifz>~

15 e@#x,03< 1.859 if z c [0, -] [-10’, 10-’]
n = 20(1)40

—
n = 100(100)1000

< –0.859 ifz<O

Due to the above termination criterion, a natural modification of the

subroutine bracket was employed in our implementations of Algorithms

2. 1–2.5 and 4.1-4.2. The modified subroutine is the following:

Subroutine bracket(a, b, c, ii, ~) (or bracket(a, b, c, ii, ~, d))

set 8 = A . tole( a, b) for some user-given fixed A ~ (O, 1) (in our experi-
ments we took A = 0.7).

if b – a s 4S, then set c = (a + b)/2, goto 10;
if c <a + 28, then set c =a + 28, goto 10;
if c >b – 28, then set c =b – 28, goto 10;

10 if f(c) = O, then print c and_terminate;
if f(a)f(c) <0, then d = a, ~ = c, (d = b);
if f(b)f(c) <0, t>en ii = c, b = b, (d = a);
ca~culate tole(ti, b); _
if b – ti < 2. tole( ti, b), then terminate.

In our experiments we tested all the problems listed in Table I with

different user-given tol (tol = 10-7, 10-10, 10-15, and O). The total number of

function evaluations in solving all the problems (154 cases) are listed in Table

II, where BR, DE, M, R, and LE stand for Brent’s method, Dekker’s method,

Algorithms M and R of Bus and Dekker, and Le’s method, respectively, and
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Table II Total Number of Function Evaluations m Solving All the Problems Lmted m Table I

tol BR DE M R LE 2.1 2.2 2.3 2.4 2.5 4.1 4.2
10-7 2804 2808 2839 7630 2694 3154 2950 264.5 2791 2687 2696 2650

1 un

10-10 2905 2963 2992 7768 2821 3338 3060 2789 2922 2819 2835 27&3

1 un

10-1$ 2975 3196 3261 8014 3061 3448 3151 2948 3015 2914 2908 2859

1 un

o 3008 2998 3146 8230 3165 3509 3219 3029 3060 2954 2950 2884

15un nun

Table 111. Total Number of Function Evaluations m Solving the 139 Cases that are Solvable

by All Methods

/toll BR]DEl Ml RlLE12.l 12.212 .312.4 2.5 4.1 I 4.2 1{
10-’ 2501 2528 2527 6830 2412 2796 2588 2341 2464 2382 2377 2347

10-10 2589 2666 2663 6952 2529 2957 2682 2464 2576 2.501 2499 2469

1O-*5 2651 2874 2903 7184 27.56 3052 2762 2615 2664 2577 2570 2535

0 2674 2998 3035 7349 2835 3094 2820 2690 2696 2598 2600 2554

nun” stands for “unsolved” meaning that a problem is not solved within 1000

iterations. From there we see that Algorithms 4.1 and 4.2 compare well with

the other 10 methods. The Algorithm 4.2 in this article has the best behavior,

especially when the termination tolerance is small. This reconfirms the fact

that the efficiency index is an asymptotic notion.

In our experiments we noticed that problem ( 13) was not solved by Dekker’s

method within 1000 iterations. Furthermore, when tol = O, there were 15

cases unsolved by Dekker’s method and 11 cases (among those 15) unsolved

by the Algorithm M of Bus and Dekker. To make the comparison more

informative we tested the 139 cases that were solvable (within 1000 itera-

tions) by all the 12 methods. The results are listed in Table III.

We also mention that the functions behave quite differently around the

calculated zeros. In fact, problems (3), (13), (14), and (15) require many more

function evaluations than others. In particular, the Algorithm R of Bus and

Dekker behaves very badly on problems (14) and (15), while Dekker’s method

did not solve (13) (within 1000 iterations) at all. To clarify these situations,

we tested three groups, each representing a subset of the problem set listed

in Table I. The first group contains only problem (13). The second group

represents (3), (14), and (15). The third group represents the rest of the
problems. The number of function evaluations for each case with tol = 10- 1~,

as well as the total number of function evaluations for each group, is listed in

Tables IV–VI, respectively.

Finally, it is interesting to mention that with problem (13) care is needed

when coding the function. In this case,

{
f(x)= 0 _,.,

xe
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Table IV. Number of Function Evaluations in Solving Problem (13) when tol = 10-15

BRIDE ]MIRILE 12.112.212.3 12.412 .514.114.2

231un]32~28 ] 16124131119 127] 23128129

Table V. Number of Function Evaluations in Solving the Second Group of Representative

Cases when tol = 10-15

Prob. Para. BR DE M R LE 2.1 2.2 2.3 2.4 2.5 4.1 4.2
#3 a=-100 19 20 20 18 16 29 34 25 26 27 25 24

b=-2
#14 n=lo 21 23 23 67 21 23 20 18 20 19 ’20 19

#14 n=30 ’21 23 23 67 ’21 23 19 18 20 19 20 19

#15 n=30 36 36 36 136 35 38 33 29 29 32 29 31
#15 n=500 39 39 39 139 40 41 37 34 33 34 35 35 “

Total 136 141 141 427 133 154 143 124 128 131 129 128
‘Para.’ stands for ‘parameter’.

Table VI. Number of Function Evaluations in Solving the Third Group of Representative

Cases when tol = 10-15

Prob. Para. BR DE M R LE 2.1 2.2 2.3 2.4 2.5 4.1 4.2

#1 9 10 10 9 9 11 9 11 10 9 10 10

#2 n=2 10 10 10 9 11 18 18 17 17 12 15 11

a= 1

#4 n=4 15 16 16 14 12 18 20 16 12 13 12 13

on [0,5]

#5 10 10 10 9 9 11 9 10 10 8 11 10

#6 n=2(J 13 13 13 15 12 15 13 15 12 11 1’2 11

#7 n=ll) 9 9 9 9 7 11 5 5 6 5 7 7

n=lfJ 11 11 11 11 11 15 15 17 14 15 1’2 11

;: n=l 10 10 10 9 1(I 12 11 11 11 11 11 9

#lo n=5 9 9 9 9 9 15 14 14 14 11 12 9

#11 n=2(l 14 15 15 9 14 21 21 20 18 ’21 17 18

#12 n=3 10 13 13 13 11 13 10 13 12 11 6 5

Total 120 126 126 116 115 160 145 149 136 127 125 114

‘Para.’ stands for ‘parameter’.

and the initial interval is [ – 1, 4]. If we code xe ‘x’2 in Fortran 77 as

x“(e–1/x2 ) then all 11 algorithms that solve this problem within 1000 itera-
tions deliver values around 0.02 as the exact solution, because the result of

the computation of 0i02 . (e- l/fO 02)2) on our machine is equal to O. However,

when we code xe” as x/e l/ x2, all algorithms give correct solutions. The

same is true when we tried to use Dekker’s method to solve this problem with

a larger tolerance such as tol = 10 ‘3.
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