
SIEVE is Simpler than LRU:
an Efcient Turn-Key Eviction Algorithm for Web Caches

Yazhuo Zhang∗

Emory University
Juncheng Yang∗†

Carnegie Mellon University
Yao Yue

Pelikan Foundation

Ymir Vigfusson
Emory University & Keystrike

K. V. Rashmi
Carnegie Mellon University

Abstract
Caching is an indispensable technique for low-cost and
fast data serving. The eviction algorithm, at the heart of a
cache, has been primarily designed to maximize efciency—
reducing the cache miss ratio. Many eviction algorithms have
been designed in the past decades. However, they all trade off
throughput, simplicity, or both for higher efciency. Such a
compromise often hinders adoption in production systems.
This work presents SIEVE, an algorithm that is simpler

than LRU and provides better than state-of-the-art efciency
and scalability for web cache workloads. We implemented
SIEVE in ve production cache libraries, requiring fewer than
20 lines of code changes on average. Our evaluation on 1559
cache traces from 7 sources shows that SIEVE achieves up
to 63.2% lower miss ratio than ARC. Moreover, SIEVE has
a lower miss ratio than 9 state-of-the-art algorithms on more
than 45% of the 1559 traces, while the next best algorithm
only has a lower miss ratio on 15%. SIEVE’s simplicity comes
with superior scalability as cache hits require no locking. Our
prototype achieves twice the throughput of an optimized 16-
thread LRU implementation. SIEVE is more than an eviction
algorithm; it can be used as a cache primitive to build ad-
vanced eviction algorithms just like FIFO and LRU.

1 Introduction
Web caches, such as Content Delivery Networks (CDNs)

and key-values caches, are widely deployed in today’s digital
landscape to reduce user request latency [14, 21, 22, 33, 69,
73, 76, 100], network bandwidth [54, 55, 79, 95], and repeated
computation [28, 89, 97, 98]. As a critical component of mod-
ern infrastructure, these caches often have a large footprint.
For example, Netix used 18,000 servers for caching over 14
PB of application data in 2021 [68]; while Twitter reportedly
had 100s of clusters using 100s of TB of DRAM and 100,000s
of CPU cores for in-memory caching in 2020 [96].
At the heart of a cache is the eviction algorithm, which

plays a crucial role in managing limited cache space. Such
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Figure 1: SIEVE is simple and efcient. The code snippet shows how FIFO-
Reinsertion and SIEVE nd eviction candidates. Minor code changes convert
FIFO-Reinsertion to SIEVE, unleashing lower miss ratios than state-of-the-art
algorithms.

algorithms are efcient when they can retain more valu-
able objects in the cache to achieve a lower miss ratio—the
fraction of requested objects that must be fetched from the
backend. The quest for high efciency has spurred a long
repertoire of clever algorithms, but most, if not all, trade
off simplicity in exchange for efciency gains. For exam-
ple, ARC [67], SLRU [55], 2Q [60], and MQ [106] manage
multiple least-recently-used (LRU) queues to achieve better
efciency. LHD [16], CACHEUS [75], LRB [79], and GL-
Cache [93] use machine learning techniques that further in-
crease system and lookup complexity. Furthermore, many of
these algorithms require explicit or implicit parameter tuning
to achieve good efciency on a target workload.

The conventional wisdom among systems operators is that
simple is beautiful: simplicity is a key appealing feature for
an algorithm to be deployed in production since it commonly
correlates with effectiveness, maintainability, scalability, and
low overhead. To illustrate, note that most caching systems or
libraries in use today, such as ATS [2], Varnish [11], Nginx [7],
Redis [9], and groupcache [25], use only FIFO and LRU
policies.
We have stumbled upon an easy improvement (Fig. 1) to

a decades-old algorithm (FIFO-Reinsertion) that materially
improves its efciency across a wide range of web cache
workloads. Instead of moving the to-be-evicted object that



has been accessed to the head of queue, SIEVE keeps it in
its original position. It should be noted that both SIEVE and
FIFO-Reinsertion insert new objects at the head of the queue.
The new algorithm is called SIEVE 1: a simple and efcient
turn-key cache eviction policy. We implemented SIEVE in ve
production cache libraries, which required fewer than 20 lines
of change on average, underscoring the ease of real-world
deployment.
Despite a simple design, SIEVE can quickly remove un-

popular objects from the cache, achieving comparatively high
efciency compared to the state-of-the-art algorithms. By ex-
perimentally evaluating SIEVE on 1559 traces from ve public
and two proprietary datasets, we show that SIEVE achieves
similar or higher efciency than 9 state-of-the-art algorithms
across traces. Compared to ARC [67], SIEVE reduces miss
ratio by up to 63.2% with a mean of 1.5% 2. As a compari-
son, ARC reduces LRU’s miss ratio by up to 33.7% with a
mean of 6.7%. Moreover, compared to the best of all algo-
rithms, SIEVE has lower miss ratio on over 45% of the 1559
traces. In comparison, the runner-up algorithm, TwoQ, only
outperforms other algorithms on 15% of the traces.

SIEVE’s design eliminates the need for locking during
cache hits, resulting in a boost in multi-threaded throughput.
Our prototype implementation in Cachelib [37] demonstrates
that SIEVE achieves twice the throughput of an optimized
LRU implementation when operating with 16 threads.

Through empirical evidence and analysis, we illustrate that
SIEVE’s efciency stems from sifting out unpopular objects
over time. SIEVE transcends a single standalone algorithm
— it can also be embedded within other cache policies to
design more advanced algorithms. We demonstrate the idea
by replacing the LRU components in ARC, TwoQ, and LeCaR
with SIEVE. The SIEVE-supported algorithms signicantly
outperform the original LRU-based algorithms. For example,
ARC-SIEVE reduces ARC’s miss ratio by up to 62.5% with a
mean reduction of 3.7% across the 1559 traces.

Our work makes the following contributions.
• We present the design for SIEVE: an easy, fast, and surpris-
ingly efcient cache eviction algorithm for web caches.

• We demonstrate SIEVE’s simplicity by implementing it in
ve production cache libraries by changing less than 20
lines of code on average.

• Using 1559 traces from 7 datasets, we show that SIEVE
outperforms all state-of-the-art eviction algorithms on more
than 45% of the traces.

• We illustrate SIEVE’s scalability using our Cachelib-based
implementation, which achieves 17% and 125% higher
throughput than optimized LRU at 1 and 16 threads.

• We show how SIEVE, as a turn-key cache primitive, opens
new opportunities for designing advanced eviction algo-
rithms, e.g., replacing the LRU in ARC, TwoQ, and LeCaR
with SIEVE.
1SIEVE sifts out unpopular objects from cache over time (§5).
2Due to a large number of traces, the mean miss ratio looks small.

2 Background and Related Work
2.1 Web caches
Web caches are essential components of modern Internet

infrastructure, playing a crucial role in reducing data access
latency and network bandwidth. Key-value caches, e.g., Mem-
cached [5], Pelikan [8] and Cachelib [37], are widely used
in modern web services such as Twitter [97] and Meta [20]
to reduce service latency. CDN caches are deployed close to
users to reduce data access latency and high WAN bandwidth
cost [14, 91, 95, 101].
Cache metrics. Caches are measured along two primary
axes: efciency and throughput performance. Cache ef-
ciency measures how well the cache can store and serve the
required data. A cache miss occurs when the requested data
is not found in the cache, requiring access to the backend
storage to retrieve the data. Common cache efciency metrics
include (1) object miss ratio: the fraction of requests that are
cache misses; (2) byte miss ratio: the fraction of bytes that
are cache misses. A lower miss ratio indicates higher cache
efciency, as more requests are served directly from the cache,
reducing backend load, access latency, and bandwidth costs.
Throughput performance, on the other hand, is as impor-

tant as efciency because the goal of a cache is to serve data
quickly and help scale the application. Beyond throughput,
scalability is also increasingly important [72, 98] as modern
CPUs often surpass 100 cores. Scalability measures through-
put growth with the number of threads accessing the cache. A
more scalable cache can better harness the many cores in a
modern CPU.
Access patterns. Web cache workloads typically follow
Power-law (generalized Zipan) distributions [20, 26, 27, 34,
49, 52, 55, 81, 82, 97], where a small subset of objects account
for a large proportion of requests. In detail, the ith popular
object has a relative frequency of 1/iα, where α is a parameter
that decides the skewness of the workload. Previous works
nd different α values from 0.6 to 0.8 [26], 0.56 [49], 0.71–
0.76 [51], 0.55–0.9 [20], and 0.6–1.5 [97]. The reasons for
the large range of α include (1) the different types of work-
loads, such as web proxy and in-memory key-value cache
workloads; (2) the layer of the cache, noting that many prox-
y/CDN caches are secondary or tertiary cache layers [55];
and (3) the popularity of the service, such as the most popular
objects receiving greater volume of requests in more popular
(widely-used) web applications. Moreover, web caches often
serve constantly growing datasets — new content and objects
are created every second.
In contrast, the backend of enterprise storage caches or

single-node caches, such as the page cache, often has a xed
size, not regularly observing new objects. Further, many stor-
age cache workloads often have scan and loop patterns [75],
in which a range of block addresses are sequentially requested
in a short time. Such patterns are rare in web cache workloads
according to our observation on 1559 traces from 7 datasets.



2.2 Cache eviction policies
The cache eviction algorithm, which decides which objects

to store in the limited cache space, governs the performance
and efciency of a cache. The eld of cache eviction algo-
rithms has a rich literature [12,17–19,23,29,32,35,36,39,41,
44–46, 53, 58, 62, 63, 71, 74, 78, 83, 86, 88, 90, 102].
Increasing complexity. Most works on cache eviction al-
gorithms focused on improving efciency, such as LRU-
k [70], TwoQ [60], SLRU [61], GDSF [29], EELRU [77],
LRFU [39], LIRS [59], ARC [67], MQ [105], CAR [15],
CLOCK-pro [58], TinyLFU [42, 43], LHD [16], LeCaR [84],
LRB [79], CACHEUS [75], GLCache [93], and HALP [80].
Over the years, new cache eviction algorithms have gradually
convoluted. Algorithms from the 1990s use two or more static
LRU queues or use different recency metrics; algorithms from
the 2000s employ size-adaptive LRU queues or use more com-
plicated recency/frequency metrics, and algorithms from the
2010s and 2020s start to use machine learning to select evic-
tion candidates. Each decade brought greater complexity to
cache eviction algorithms. Nevertheless, as we show in §4,
while the new algorithms excel on a few specic traces, they
do not show a signicant improvement (and some are even
worse) compared to the traditional ones on a large number
of workloads. The combination of limited improvement and
high complexity explains why these algorithms have not been
used in production systems.
The trouble with complexity. Multiple problems come
with increasing complexity. First, complex cache eviction
algorithms are difcult to debug due to their intricate logic.
For example, we nd two open-source cache simulators used
in previous works have two different bugs in the LIRS [59]
implementation. Second, complexity may affect efciency
in surprising ways. For example, previous work reports that
both LIRS and ARC exhibit Belady’s anomaly [50, 85]: miss
ratio increases with the cache size for some workloads. It’s
worth noting that FIFO, although simple, also suffers from this
anomaly. Third, complexity often negatively correlates with
throughput performance. A more intricate algorithm performs
more computation with potentially longer critical sections,
reducing both throughput and scalability. Furthermore, many
of these algorithms need to store more per-object metadata,
which reduces the effective cache size that can be used for
caching data. For example, the per-object metadata required
by CACHEUS is 3.3× larger than that of LRU. Fourth, com-
plex algorithms often have parameters that can be difcult to
tune. For example, all the machine-learning-based algorithms
include many parameters about learning. Although some al-
gorithms do not have explicit parameters, e.g., LIRS, previous
work shows that the implicit ghost queue size can impact the
efciency [85].
Trade-offs in using simple eviction algorithms. Besides
works focusing on improving cache efciency, several other
works have improved cache throughput and scalability. For
example, MemC3 [47] uses Cuckoo hashing and CLOCK

eviction to improve Memcached’s throughput and scalabil-
ity; MICA [64] uses log-structured storage, data partitioning,
and a lossy hash table to improve key-value cache through-
put and scalability. Segcache [98] uses segment-structured
storage with a FIFO-based eviction algorithm and leverages
macro management to improve scalability. Frozenhot [72] im-
proves cache scalability by freezing hot objects in the cache
to avoid locking. However, it’s crucial to note that while these
approaches excel in throughput and scalability, they often
compromise on cache efciency due to the use of simpler,
weaker eviction algorithms such as CLOCK3 and FIFO.

2.3 Lazy promotion and quick demotion
Promotion and demotion are two cache internal operations

used to maintain the logical ordering between objects4. Re-
cent work [94] shows that “lazy promotion” and “quick demo-
tion” are two important properties of efcient cache eviction
algorithms.

Lazy promotion refers to the strategy of promoting cached
objects only at eviction time. It aims to retain popular objects
with minimal effort. An example of lazy promotion is adding
reinsertion to FIFO. In contrast, FIFO has no promotion, and
LRU performs eager promotion – moving objects to the head
of the queue on every cache hit. Lazy promotion can improve
(1) throughput due to less computation and (2) efciency due
to more information about an object at eviction.
Quick demotion removes most objects quickly after they

are inserted. Many previous works have discussed this idea in
the context of evicting pages from a scan [16,60,67,70,75,77].
Recent work also shows that not only storage workloads but
web cache workloads also benet from quick demotion [94]
because object popularity follows a power-law distribution,
and many objects are unpopular.
To the best of our knowledge, our proposed cache evic-

tion algorithm, which we call SIEVE, is the simplest one that
effectively achieves both lazy promotion and quick demotion.

3 Design and Implementation
3.1 SIEVE Design

In this section, we introduce SIEVE, a cache eviction algo-
rithm that achieves both simplicity and efciency.
Data structure. SIEVE requires only one FIFO queue and
one pointer called “hand”. The queue maintains the insertion
order between objects. Each object in the queue uses one bit
to track the visited/non-visited status. The hand points to the
next eviction candidate in the cache and moves from the tail
to the head. Note that, unlike existing algorithms, e.g., LRU,
FIFO, and CLOCK, in which the eviction candidate is always
the tail object, the eviction candidate in SIEVE is an object

3CLOCK was recently shown to be more efcient than LRU [94].
4Note that the terms “promotion” and “demotion” are also commonly

used in the context of cache hierarchy. In this case, promotion refers to the
process of moving data to a faster device, while demotion involves moving
the data to a slower device [65, 87].
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Figure 2: An illustration of SIEVE. Note that FIFO-Reinsertion and
CLOCK are different implementations of the same algorithm. We use FIFO-
Reinsertion in the illustration but will use CLOCK in the rest of the text
because it is more commonly used and is shorter.

somewhere in the queue.
SIEVE operations. A cache hit in SIEVE changes the visited
bit of the accessed object to 1. For a popular object whose
visited bit is already 1, SIEVE does not need to perform any
operation. During a cache miss, SIEVE examines the object
pointed by the hand. If it has been visited, the visited bit is
reset, and the hand moves to the next position (the retained
object stays in the original position of the queue). It continues
this process until it encounters an object with the visited bit
being 0, and it evicts the object. After the eviction, the hand
points to the next position (the previous object in the queue).
While an evicted object is in the middle of the queue most
of the time, a new object is always inserted into the head of
the queue. In other words, the new objects and the retained
objects are not mixed together.
At rst glance, SIEVE is similar to CLOCK/Second

Chance/FIFO-Reinsertion 5. Each algorithm maintains a sin-
gle queue in which each object is associated with a visited
bit to track its access status. Visited objects are retained (also
called "survived") during an eviction. Notably, new objects
are inserted at the head of the queue in both SIEVE and FIFO-
Reinsertion. However, the hand in SIEVE moves from the tail
to the head over time, whereas the hand in FIFO-Reinsertion
stays at the tail. The key difference is where a retained ob-
ject is kept. SIEVE keeps it in the old position, while FIFO-
Reinsertion inserts it at the head, together with newly inserted
objects, as depicted in Fig. 2.
We detail the algorithm in Alg. 1. Line 1 checks whether

there is a hit, and if so, then line 2 sets the visited bit to one.
In the case of a cache miss (Line 3), Lines 5-12 identify the
object to be evicted.
Lazy promotion and quick demotion. Despite a simple
design, SIEVE effectively incorporates both lazy promotion
and quick demotion. As described in §2.3, an object is only
promoted at the eviction time in lazy promotion. SIEVE op-
erates in a similar manner. However, rather than promoting
the object to the head of the queue, SIEVE keeps the object
at its original location. The "survived" objects are generally
more popular than the evicted ones, thus, they are likely to
be accessed again in the future. By gathering the "survived"

5Note that Second Chance, CLOCK, and FIFO-Reinsertion are different
implementations of the same eviction algorithm.

Algorithm 1 SIEVE

Input: The request x, doubly-linked queue T , cache size C, hand p
1: if x is in T then ▷ Cache Hit
2: x.visited ← 1
3: else ▷ Cache Miss
4: if |T |=C then ▷ Cache Full
5: o ← p
6: if o is NULL then
7: o ← tail of T
8: while o.visited = 1 do
9: o.visited ← 0
10: o ← o.prev
11: if o is NULL then
12: o ← tail of T
13: p ← o.prev
14: Discard o in T ▷ Eviction
15: Insert x in the head of T .
16: x.visited ← 0 ▷ Insertion

objects, the hand in SIEVE can quickly move from the tail to
the area near the head, where most objects are newly inserted.
These newly inserted objects are quickly examined by the
hand of SIEVE after they are admitted into the cache, thus
achieving quick demotion. This eviction mechanism makes
SIEVE achieve both lazy promotion and quick demotion with-
out adding too much overhead.
The key ingredient of SIEVE is the moving hand, which

functions like an adaptive lter that removes unpopular ob-
jects from the cache. This mechanism enables SIEVE to strike
a balance between nding new popular objects and keeping
old popular objects. We discuss more in §5.

3.2 Implementation
Simulation. We implemented SIEVE in libCacheSim [92].
LibCacheSim is a high-performance cache simulator de-
signed for running cache simulations and analyzing cache
traces. It supports many state-of-the-art eviction algo-
rithms, including ARC [67], LIRS [59], CACHEUS [75],
LeCaR [84], TwoQ [60], LHD [16], Hyperbolic [24], FIFO-
Reinsertion/CLOCK [35], B-LRU (Bloom Filter LRU), LRU,
LFU, and FIFO. For all state-of-the-art algorithms, we used
the congurations from the original papers.
Prototype. Because of SIEVE’s simplicity, it can be imple-
mented on top of a FIFO, LRU, or CLOCK cache in just a few
lines by adding, initializing, and tracking the “hand” pointer.
The object pointed to by the hand is either evicted or retained,
depending on whether it has been accessed.
We implemented SIEVE caching in ve different open-

source cache libraries: Cachelib [20], groupcache [25],
mnemonist [6], lru-dict [3], and lru-rs [4]. These represent the
most popular cache libraries of ve different programming
languages: C++, Golang, JavaScript, Python, and Rust. All
ve of these production cache libraries implement LRU as the
eviction algorithm of choice. Aside from mnemonist, which
uses arrays, they all use doubly-linked-list-based implementa-
tions of LRU. Adapting these LRU implementations to use
SIEVE was a low effort, as mentioned earlier.



Table 1: Datasets used in this work. CDN 1 and 2 are proprietary, and all
others are publicly available.

trace
collections

approx
time # traces cache

type
# request
(million)

# object
(million)

CDN 1 2021 1273 object 37,460 2,652
CDN 2 2018 219 object 3,728 298
Tencent Photo [103] 2018 2 object 5,650 1,038
Wiki CDN [1] 2019 3 object 2,863 56
Twitter KV [97] 2020 54 KV 195,441 10,650
Meta KV [10] 2022 5 KV 1,644 82
Meta CDN [10] 2023 3 object 231 76

4 Evaluation
In this section, we evaluate SIEVE to answer the following

questions.
• Does SIEVE have higher efciency than state-of-the-art
cache eviction algorithms?

• Can SIEVE improve a cache’s throughput and scalability?
• Is SIEVE simpler than other algorithms?

4.1 Experimental setup
Workloads. Our experiments use open-source traces from
Twitter [97], Meta [10], Wikimedia [1], TencentPhoto [103,
104], and two proprietary CDN datasets. We list the dataset
information in Table 1. It consists of 1559 traces that together
contain 247,017 million requests to 14,852 million objects.
Notably, our research is centered around web traces. We re-
played the traces in the simulator and the prototypes as a
closed system with instant on-demand ll.
Metrics. Miss ratio serves as a key performance indica-
tor when evaluating the efciency of a cache system. How-
ever, when analyzing different traces (even within the same
dataset), the miss ratios can vary signicantly, making direct
comparisons and visualizations infeasible, as shown in Fig. 3.
Therefore, we calculate the miss ratio reduction relative to a
baseline method (FIFO in this work): mrFIFO−mralgo

mrFIFO
where mr

stands for miss ratio. If an algorithm’s miss ratio is higher than
FIFO, we use mrFIFO−mralgo

mralgo
. This metric has a range between

-1 and 1.
We measure throughput in millions of operations per sec-

ond (Mops) to quantify a cache’s performance. To evaluate
scalability, we vary the number of trace replay threads from 1
to 16 and measure the throughput.
Testbed. Our evaluations were conducted on Cloudlab [40]
and focused on two key aspects: simulation-based efciency
and prototype-based throughput and simplicity.

We used libCacheSim [92], a high-performance cache sim-
ulator, to evaluate the efciency of different cache algorithms.
These simulations ran on various node types at either the
Clemson or Utah sites, subject to availability.

We evaluate the throughput and simplicity using prototypes,
as described in §3.2. The prototype evaluations were con-
ducted on the c6420 node from the Clemson site. This node
type has a dual-socket Intel Gold 6142 running at 2.6 GHz
and is equipped with 384 GB DDR4 DRAM. We turned off

turbo boost and pinned threads to CPU cores in one NUMA
node in our evaluations. We validated the efciency results
from the simulator and prototype using 60 randomly selected
traces and found the same conclusion.

4.2 Efciency results
In this section, we compare the efciency of different evic-

tion algorithms. Because many caches today use slab-based
space management, in which evictions happen on objects of
similar sizes, we do not consider object size in this section.
The cache sizes are determined as a percentage of the num-
ber of objects in a trace. We evaluate eight cache sizes using
1559 traces from the 7 datasets and present two representa-
tive cache sizes at 0.1% and 10% of the trace footprint (the
number of unique objects in the trace).
Three large datasets CDN1, CDN2 and Twitter. Fig. 3
shows the miss ratio reduction (from FIFO) of different algo-
rithms across traces. The whiskers on the boxplots are dened
using p10 and p90, allowing us to disregard extreme data
and concentrate on the typical cases. At the large cache size,
SIEVE demonstrates the most signicant reductions across
nearly all percentiles. For example, SIEVE reduces FIFO’s
miss ratio by more than 42% on 10% of the traces (top
whisker) with a mean of 21% on the CDN1 dataset using
the large cache size (Fig. 3a). As a comparison, all other algo-
rithms have smaller reductions on this dataset. For example,
CLOCK/FIFO-Reinsertion, which is conceptually similar to
SIEVE, can only reduce FIFO’s miss ratio by 15% on average.
Compared to advanced algorithms, e.g., ARC, SIEVE reduces
ARC miss ratio by up to 63.2% with a mean of 1.5%. We
remark that a 1.5% mean miss ratio reduction on the huge
number of traces is signicant. For example, ARC only re-
duces LRU’s miss ratio by 6.3% on average (not shown).
A similar observation can be made on the CDN2 dataset.
Although LHD is the best algorithm on the Twitter dataset,
SIEVE scores second and outperforms most other state-of-the-
art algorithms.

When the cache is very small, TwoQ and LHD sometimes
outperform SIEVE. This is because TwoQ and LHD can
quickly remove newly-inserted low-value objects similar to
SIEVE. The primary reason for SIEVE’s relatively poor perfor-
mance is that new objects cannot demonstrate their popularity
before being evicted when the cache size is very small. A
similar problem also happens with ARC and LIRS. ARC’s
adaptive algorithm sometimes shrinks the recency queue to
very small and yields a high miss ratio. LIRS, which uses a
1% queue for new objects, suffers the most when the cache
size is small, as we see its miss ratio on some traces higher
than FIFO. In contrast, TwoQ does not suffer from the small
cache sizes because it reserves a xed 25% of the cache space
for new objects, preventing overly aggressive demotion. How-
ever, we remark that the production miss ratios reported in
previous works [13, 55, 97, 98] are close to the miss ratios we
observe at the large cache size.
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(a) CDN1 workloads, large cache, 1273 traces
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(b) CDN2 workloads, large cache, 219 traces

SI
EV
E
AR
C

Ti
ny
LF
U
Tw
oQ LI

RS LH
D

CA
CH
EU
S

Hy
pe
rb
ol
ic

CL
OC
K
LR
U

B-
LR
U

0.0

0.1

0.2

0.3

0.4

M
is
s
R
a
ti
o
R
e
d
u
ct
io
n

fr
o
m

FI
FO

(c) Twitter workloads, large cache, 54 traces
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(d) CDN1 workloads, small cache, 1273 traces
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Figure 3: The box shows the miss ratio reduction from FIFO over all traces in the dataset. The box shows P25 and P75, the whiskers show P10 and P90, and the
triangle shows the mean. The large cache uses 10% of the trace footprint, and the small cache uses 0.1% of the trace footprint. SIEVE achieves similar or better
miss ratio reduction compared to state-of-the-art algorithms.
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Figure 4: Miss ratio reduction on Meta (KV + CDN), Wiki CDN, and
Tencent Photo CDN datasets. The different opacity of the same color indicates
multiple traces from the dataset. Some negative results are not shown.

The secret behind SIEVE’s efciency is the ability to
quickly remove newly-inserted unpopular objects (quick de-
motion), the ability to sift out old unpopular objects, and the
balance between new and old objects. We discuss more in §5.
Four small datasets: Meta KV, Meta CDN, Wiki, and Ten-
centPhoto. Because each dataset contains fewer than ten
traces, we use scatter plots to compare the algorithms. Fig. 4
demonstrates that SIEVE outperforms all other algorithms on
all four datasets at the large cache size. When the cache size is
small, the observation is similar to that made in Fig. 3. SIEVE
is the best algorithm on the Wiki dataset. TwoQ and LHD are
the best on Meta and TencentPhoto datasets. Although not
the best, SIEVE remains highly competitive.
Best-performing algorithm per dataset. We have demon-
strated that SIEVE provides larger miss ratio reductions across
traces than state-of-the-art algorithms. For a more quantitative
comparison, Fig. 5 shows the fraction of traces each algorithm
performs the best.
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Figure 5: Best-performing algorithms on each dataset. Table 1 shows the
number of traces per dataset.

With a large cache size, SIEVE outperforms all other algo-
rithms on the Tencent Photo, Wiki, and Meta KV datasets. On
the CDN1 and CDN2 datasets, SIEVE is the best algorithm
on 48% and 38% of the 1273 and 219 traces. On the Twitter
dataset, although SIEVE is the best on only 30% of the traces,
it is important to note that no other algorithms are the best on
more than 18% of the traces. When using the small cache size,
SIEVE, TwoQ is the best algorithm winning on the two Meta
datasets. On the other datasets, SIEVE and LHD have similar
shares being the best-performing algorithms. The reason for
the observation is similar to that previously explained.

4.3 Throughput performance
Besides efciency, throughput is the other important metric

for caching systems. Although we have implemented SIEVE
in ve different libraries, we focus on Cachelib’s results. Be-
cause all other libraries implement strict LRU and do not
consider object sizes, evaluations yield the same miss ratio as
our simulation. Moreover, strict LRU is not scalable, as we
show next.
Fig. 6 shows how throughput grows with the number of
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Figure 6: Throughput scaling with CPU cores on two KV-cache workloads.

Table 2: Lines of code requires modication to add SIEVE to a production
cache library.

Cache library Language Lines
groupcache [25] Golang 21
mnemonist [6] Javascript 12

lru-rs [4] Rust 16
lru-dict [3] Python + C 21

trace replay threads using two production traces from Meta
and Twitter. To better emulate real-world deployments in
which the working set size (dataset size) grows with the hard-
ware specs (#cores and DRAM sizes), we scale the cache size
and working set size together with the number of threads. To
scale the working set size, each thread plays the same trace
with the object id transformed into a new space. For example,
the benchmark sends 4× more requests to 4× larger cache
size at 4 threads compared to the single-thread experiment.
We set the cache size to be 4× nthread GB for both traces,
which gives miss ratios of 7% (Meta) and 2% (Twitter). We
remark that the miss ratio is close to previous reports [13, 98].
The LRU and TwoQ in Cachelib use extensive optimiza-

tions to improve the scalability. For example, objects that
were promoted to the head of the queue in the last 60 sec-
onds are not promoted again, which reduces lock contention
without compromising the miss ratio. Cachelib further adds a
lock combining technique to elide expensive coherence and
synchronization operations to boost throughput [38]. As a
result of the optimizations, both LRU and TwoQ show im-
pressive scalability results compared to the unoptimized LRU:
the throughput is 6× higher at 16 threads than using a single
thread on the Twitter trace. As a comparison, unoptimized
LRU’s throughput plateaus at 4 threads.

Compared to these LRU-based algorithms, SIEVE does not
require “promotion” at each cache hit. Therefore, it is faster
and more scalable. At a single thread, SIEVE is 16% (17%)
faster than the optimized LRU (TwoQ) and on both traces.
At 16 threads, SIEVE shows more than 2× higher throughput
than the optimized LRU and TwoQ on the Meta trace.

4.4 Simplicity
Prototype implementations. SIEVE not only achieves bet-
ter efciency, higher throughput, and better scalability, but
it is also very simple. We chose the most popular cache
libraries/systems from ve different languages: C++, Go,
JavaScript, Python, and Rust, and replaced the LRU with

Table 3: Lines of code (excluding comments and empty lines) and per-object
metadata size required to implement each algorithm in our simulator. We
assume that frequency counter and timestamps use 4 bytes and pointers use
8 bytes.

Algorithm cache hit eviction insertion metadata size
FIFO 1 4 3 16B
LRU 5 4 3 16B
ARC 64 108 20 17B
LIRS 96 120 64 17B
LHD 192 81 64 13B

LeCaR 72 76 20 40B
CACHEUS 168 140 150 54B

TwoQ 28 16 8 17B
Hyberbolic 4 20 4 16B

CLOCK 4 9 3 17B
SIEVE 4 9 3 17B

SIEVE.
Although different libraries/systems have different imple-

mentations of LRU, e.g., most use doubly-linked-list, and
some use arrays, we nd that implementing SIEVE is very
easy. Table 2 shows the number of lines (not including the
tests) needed to replace LRU — all implementations require
no more than 21 lines of code changes 6.
Advanced algorithms in simulator. Most of the complex
algorithms we evaluated in §4.2 are not implemented in pro-
duction systems. Therefore, we compare the lines of code
needed to implement cache hit, insert, and evict in our simu-
lator. Although we implemented our own linked list and hash
table data structures in C for our simulator, we do not include
the code lines related to list and hash table operations, i.e., ap-
pending to the list head or inserting to the hash table requires
one line.
Table 3 shows that FIFO requires the fewest number of

lines to implement. On top of FIFO, implementing LRU adds
a few lines to promote an object upon cache hits. CLOCK
and SIEVE require close to 10 lines to implement the eviction
function because both need to nd the rst object that has not
been visited. However, we remark that SIEVE is simpler than
LRU and CLOCK because SIEVE does not require moving
objects to the head of the queue in either hit or miss (evict).
Besides these, all other algorithms require one to two orders
more lines of code to implement the three functions.
Per-object metadata. In addition to the implementation com-
plexity, we also quantied the per-object metadata needed to
implement each algorithm. FIFO does not require any meta-
data when implemented using a ring buffer. However, such
an implementation does not support overwrite or delete. So
common FIFO implementation also uses a doubly-linked list
with 16 bytes of per-object metadata similar to LRU. CLOCK
and SIEVE are similar, both requiring 1-bit to track object
access status. When implemented using a doubly linked list,

6While most LRU implementations are straightforward to adapt for SIEVE,
CacheLib is an exception. Cachelib is highly optimized for LRU-based algo-
rithms. Many optimizations are not needed for SIEVE, making it impractical
to quantify code modications for integration with SIEVE. Therefore, it is
not included in Table 2.
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Figure 7: Left: illustration of the sifting process. Right: Miss ratio over time for two traces. The gaps between SIEVE’s miss ratio and others enlarge over time.

they use 17 bytes per-object metadata. Compared to SIEVE,
advanced algorithms often require more per-object metadata.
Many key-value cache workloads have objects as small as
10s of bytes [66, 97], and large metadata wastes the precious
cache space.
ZERO parameter. Besides being easy to implement and
having less metadata, SIEVE also has no parameters. Except
for FIFO, LRU, CLOCK, and Hyperbolic, all other algorithms
have explicit or implicit parameters, e.g., the sizes of queues
in LIRS, the learning rate in LeCaR and CACHEUS, and the
decay rate and age granularity in LHD. Note that although
ARC has no explicit parameters, its adaptive algorithm uses
implicit parameters in deciding when and how much space to
move between the queues. As a comparison, SIEVE has no
parameter and requires no tuning.

5 Distilling SIEVE’s Effectiveness
Our empirical evaluation shows that SIEVE is simultane-

ously simple, fast, scalable, and efcient. In a well-trodden
eld like cache eviction, SIEVE’s competitive performance
was a genuine surprise to us as well. We next report our anal-
ysis that seeks to understand the secrets behind its efciency.

5.1 Visualizing the sifting process
The workhorse of SIEVE is the “hand” that functions as

a sieve: it sifts through the cache to lter out unpopular ob-
jects and retain the popular ones. We illustrate this process in
Fig. 7a, where each column (queue) represents a snapshot of
the cached objects over time from left to right. As the hand
moves from the tail (the oldest object) to the head (the newest
object), objects that have not been visited are evicted – the
same sweeping mechanism that underlies CLOCK [30, 35].
For example, after the rst round of sifting, objects at least as
popular as A remain in the cache while others are evicted. The
newly admitted objects are placed at the head of the queue —
much like the CLOCK policy, but a departure from CLOCK,
which does in-place replacements to emulate LRU. During
the subsequent rounds of sifting, if objects that survived pre-
vious rounds remain popular, they will stay in the cache. In
such a case, since most old objects are not evicted, the evic-
tion hand quickly moves past the old popular objects to the
queue positions close to the head. This allows newly inserted
objects to be quickly assessed and evicted, putting greater

eviction pressure on unpopular items (such as “one-hit won-
ders”) than LRU and its variations [67]. As previous work has
shown [16, 55, 94], quick demotion is crucial for achieving
high cache efciency.
Fig. 7b and Fig. 7c show the cumulative miss ratio over

time of different algorithms on two representative production
traces. After the cache is warmed up, the miss ratio gaps be-
tween SIEVE and other algorithms widen over time, support-
ing the interpretation that SIEVE indeed sifts out unpopular
objects and retains popular ones. A similar observation can
be seen in Fig. 10a.

5.2 Analyzing the sifting process
We now analyze the popularity retention mechanism in

SIEVE. To clarify the exposition, suppose the SIEVE cache
can t C equally sized objects. Since SIEVE always inserts
new objects at the head, and objects that are retained remain
in their original positions within the queue, the algorithm
implicitly partitions the cache between new and old objects.
This partition is dynamic, allowing SIEVE to strike a bal-
ance between exploration (nding new popular objects) and
exploitation (enjoying hits on old popular objects).

SIEVE performs sifting by moving the hand from the tail
to the head, evicting unpopular objects along the way, which
we call one round of sifting. We use r to denote the number
of rounds. We rst enumerate the queue positions p from
the tail (p = 0) to the head (p = C− 1). We then further
denote that an object at position p in round r is examined
(during eviction) or inserted at time T r

p . Note that T effectively
denes a logical timer for the examined objects: whenever an
object is examined, T increases by 1, regardless of whether the
examined object is evicted or retained. In addition, T changes
once each round for an old object (retained from previous
rounds).
For an old object x at position p, we dene the “inter-

examination time” Ie(pr) = T r
p −T r−1

p′ where p′ was the po-
sition of x in round r− 1. Clearly, p′ ≥ p. For a new object
inserted in the current round, the inter-examination time is
dened as the time between its examination and insertion. We
further dene an old object x’s “inter-arrival time” Ia(xr) as
the time, measured again in the number of objects examined,
between the rst request to the x in round r and the last re-



0 20 40 60 80
Cache Size (X% of Working Set)

0.0

0.2

0.4

0.6

0.8

M
is
s
R
a
ti
o

LRU

ARC

LFU

SIEVE

(a) Miss ratio over size

0 20 40 60 80
Cache Size (X% of Working Set)

0.0

0.2

0.4

0.6

0.8

1.0

Po
p
u
la
r
O
b
je
ct

R
a
ti
o

SIEVE

LFU

ARC

LRU

(b) Popular object ratio over size

Figure 8: Miss ratio and popular object ratio on a Zipan dataset (α= 1.0).

quest to x in round r−1. For a new object, the inter-arrival
time is the time between its insertion and the second request.
If an old object is not requested in the last round or a new
object does not have a second request, its inter-arrival time is
innite.

In round r, consider two consecutive retained objects x1 and
x2 at position p1 and p2 = p1+1. The inter-examination times
are Ie(pr1) = T r

p1 −T r−1
p′1

and Ie(pr2) = T r
p2 −T r−1

p′2
, respectively.

The transition yields two invariants:

T r
p2 −T r

p1 = 1

T r−1
p′2

−T r−1
p′1

≥ 1

The rst equation follows from x1 and x2 being consecutively
retained objects; the second inequality expresses that other
evictions may have taken place between x1 and x2 in the
previous round. Together, these imply that Ie(pr1) ≥ Ie(pr2).
The result generalizes further: for any two retained old objects
in the queue, the object closer to the head has a smaller inter-
examination time.

Moreover, if an object is retained, its inter-arrival time must
be no greater than its inter-examination time. Therefore, for
any retained object x at position px, its inter-arrival time Ia(xr)
must be smaller than the tail object’s inter-examination time:

Ia(xr)≤ Ie(prx)≤ Ie(pr0) (1)

Using the commonly assumed independent reference
model [31, 48, 56, 57] with a Poisson arrival, we can expect
any retained object to be more popular than some dynamic
threshold set by the tail object’s inter-examination time Ie(pr0).
Since evicting an object keeps the hand pointer at its original
position (relative to the tail), the more objects are evicted
during a round, the longer the inter-examination time. As a
result, SIEVE effectively adapts the popularity threshold so
that more objects are retained in the next round.
Following our sifting process metaphor, the mesh size in

SIEVE is determined by the tail object’s inter-examination
time Ie(pr0), which is dynamically adjusted based on object
popularity change. If too few objects are retained in one round
(mesh size too small), then we will have an increased tail
inter-examination time Ie(pr0) (a larger mesh size) in the next
round.

5.3 Deeper study with synthetic workloads
Production trace workloads are often too complex and dy-

namic to analyze. One consistent nding from past workload
characterization work, however, is that object popularity in
web cache workloads invariably follows a heavy-tailed power-
law (generalized Zipan) distribution [27, 97]. Therefore, we
opted for synthetic power-law workloads for our study. It
allows us to easily modify workload features to better un-
derstand their impact on performance. Using these synthetic
workloads, we further scrutinize SIEVE’s effectiveness.
Miss ratio over size. Fig. 8a displays the miss ratio of
LRU, LFU, ARC, and SIEVE at different cache sizes. Notably,
LFU, ARC, and SIEVE all exhibit lower miss ratios than LRU,
demonstrating their efciency. Despite being considered opti-
mal for synthetic power-law workloads, LFU performs simi-
larly to ARC and is visibly worse than SIEVE. This is because
objects with medium popularity, such as objects with ranks
around the cache size C, are only requested once before their
eviction. LFU cannot distinguish the true popularity of these
objects and misses out on an opportunity for better perfor-
mance. As a comparison, both ARC and SIEVE can quickly
remove new and potentially unpopular objects, which allows
cached objects to enjoy more time in the cache to demonstrate
their popularity. Between the two algorithms, SIEVE further
extends the tenure of these objects in the cache because when
the hand sweeps through the newly inserted objects, the ob-
jects closer to the head must have strictly shorter inter-arrival
times (expected to be more popular) to survive.
Popular object ratio over size. To capture how different
algorithms manage popular objects, we dene a metric called
“popular object ratio”. Under the assumption of a static and
known popularity distribution, the optimal caching policy
retains the most popular content within the cache at all times.
Given a cache size C and a workload following a power-
law distribution, the popular objects are the C most frequent
objects in the workload, denoted by H. The popular ratio
of objects in the cache at time t is calculated by It =

|H∩At |
C

where At denotes the cache contents at time t.
Fig. 8b shows the popular object ratio at different cache

sizes. LRU evicts objects based on recency, which only
weakly correlates with popularity. In this scenario, LRU stores
the least number of popular objects. LFU stores slightly more
“popular objects” than ARC. SIEVE, however, successfully
lters out unpopular objects from the cache.
Varying the popularity skew. Fig. 8 shows a distribution
with Zipan skewness α= 1. We further studied how different
concentration of popularity affects SIEVE’s effectiveness. Due
to space restrictions, we focus on results with large cache
sizes for the remainder of this subsection. Results using the
small cache size are either similar or do not reveal interesting
patterns.

Fig. 9a and Fig. 9b demonstrate the impact of varying skew
on miss and popular object ratios. As skew increases, making
popular objects more prominent, it becomes easier to identify
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Figure 9: Left two: miss ratio and popular object ratio on Zipan workloads with different α. Right: hand position in the cache over time in Zipan workloads.

and cache the popular objects, increasing the popular object
ratio and reducing the miss ratio for all tested algorithms.
Among ARC, LFU, and SIEVE, we observe that SIEVE always
shows a higher popular ratio with a lower miss ratio across
skewness, indicating the efciency of SIEVE is not limited to
very skewed workloads.

Fig. 9c illustrates the hand position in the SIEVE cache over
time, advancing towards the head with each retained object
and pausing during evictions. Therefore, the more objects are
retained, the faster the movement. We observe that the hand
moves more slowly in the rst round than in the later rounds
because that is when many unpopular objects are evicted. In
subsequent rounds, the hand lingers at positions close to the
head for most of the time because SIEVE keeps a new object
at position p only if it is more popular (shorter inter-arrival
time) than the object at position p−1. In other words, SIEVE
performs quick demotion [87].

In more skewed workloads, the hand moves quickly due
to early arrival and higher request volumes for popular ob-
jects, allowing SIEVE to cache most popular objects by the
end of the rst round. Consequently, the hand rapidly transi-
tions from tail to head with fewer evictions and spends less
time near the head, as new objects are more likely to be re-
tained, hastening its progress. Nevertheless, the time of each
round varies depending on the frequency of encountering po-
tentially popular objects, highlighting SIEVE’s adaptability
to workload shifts. When new popular objects appear, the
hand accelerates, replacing existing cached objects with the
newcomers by giving less time to set their visited bit.

SIEVE is adaptive. To visualize SIEVE’s adaptivity via the
sifting process, we created a new workload by joining two Zip-
an (α= 1.0) workloads that request different populations of
objects. Fig. 10 shows the interval miss ratio (per 100,000 re-
quests) over time on this conjoined workload. The changeover
happens at the 50% midway time mark. We observe that the
interval miss ratio of LFU skyrockets to nearly 100% (beyond
gure bounds) since new objects cannot replace the old ob-
jects. Relative to LRU and ARC, SIEVE’s miss ratio spike is
larger because it takes time for the hand to move back to the
tail before it can evict old objects. However, SIEVE’s spike
is invisible when the cache size is small (not shown). With
respect to the interval miss ratio spike, we observe the popular
object ratio of all algorithms (the curves overlap) dropping to
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Figure 10: Interval miss ratio and popular object ratio over time on a work-
load constructed by connecting two different Zipan workloads (α= 1).
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Figure 11: Average number of instructions per request when running LRU,
FIFO, and SIEVE caches. The top number denotes the miss ratio.

0 when the workload changes at the midway point. Whereas
LFU never recovers from the drop, the popular object ratios
in all other algorithms quickly recover to large proportions.
Finally, the gures corroborate our interpretation of the sift-
ing process: SIEVE’s miss ratio drops over time, while the
fraction of popular objects increases over time.

6 SIEVE as a Turn-key Cache Primitive
6.1 Cache primitives

Beyond being a cache eviction algorithm, SIEVE can serve
as a cache primitive for designing more advanced eviction
policies. To study the range of such policies, we categorize
existing cache eviction algorithm designs into four main ap-
proaches. (1)We can design simple and easy-to-understand
eviction algorithms, such as FIFO queues, LRU queues, LFU
queues, and Random eviction. We call these simple algorithms
cache primitives. SIEVE falls under this category. (2) We can
improve the cache primitives. For example, FIFO-Reinsertion
is designed by adding reinsertion to FIFO; LRU-K [70] is
designed by changing the recency metric in LRU. (3) We can
compose multiple cache primitives with objects moved be-
tween them. For example, ARC, SLRU, and MQ use multiple
LRU queues. (4) We can run multiple cache primitives and
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Figure 12: Impact of replacing LRU with SIEVE in advanced algorithms (a,b). The potential of FIFO, LRU, and SIEVE when endowed with foresight (c).

craft a decision-maker to select eviction candidates suggested
by the primitives. For example, LeCaR [84] uses reinforce-
ment learning to choose between the eviction candidates from
LRU and LFU; HALP [80] uses machine learning (MLP) to
choose one object from the eight objects at the LRU tail.

Having an efcient cache primitive not only provides an
effective and simple eviction algorithm but also enables other
approaches to design more efcient algorithms. The ideal
cache primitive is simultaneously (1) simple, (2) efcient, and
(3) fast — in terms of high throughput. For example, FIFO
and LRU meet these requirements and are frequently used to
construct more advanced algorithms. However, they are less
efcient than complex algorithms.

While we have shown that SIEVE is simple, efcient, and
fast in §4, to further understand SIEVE as a cache primi-
tive, we compare the number of instructions needed to run
FIFO, LRU, and SIEVE caches. We remark that the number
of instructions may not necessarily correlate with latency or
throughput but rather a rough metric of CPU resource usage.
We used perf stat to measure the number of instructions
for serving power-law workloads (100 million requests, 1
million objects) in our simulator. We then deduct the simu-
lator overhead by measuring a no-op cache, which performs
nothing on cache hits and misses.

Fig. 11 shows that SIEVE generally executes fewer instruc-
tions per request than FIFO and LRU, a difference accentu-
ated in skewed workloads and larger cache sizes. Compared
to LRU, SIEVE requires fewer instructions since SIEVE needs
only to check and possibly update a Boolean eld on cache
hits, which is much simpler than moving an object to the
head of the queue. Besides LRU, SIEVE also requires fewer
instructions than FIFO because of the difference in miss ra-
tios. Because SIEVE has a lower miss ratio than FIFO, fewer
objects need to be inserted due to cache misses, leading to
fewer instructions per request on average. The only exception
is when SIEVE and FIFO have similar miss ratios, in which
case, FIFO executes fewer instructions than SIEVE. Overall,
SIEVE requires up to 40% and 24% fewer instructions than
LRU and FIFO, respectively.

6.2 Turn-key cache eviction with SIEVE

As a cache primitive, SIEVE can facilitate the design of
more advanced eviction algorithms. To understand the bene-
ts of using a better cache primitive, we replaced the LRU in
LeCaR, TwoQ, and ARC with SIEVE. Note that for ARC, we
only replace the LRU for frequent objects.

We evaluate these algorithms on all traces and show the
miss ratio reduction(from FIFO) in Fig. 12a and Fig. 12b.
Compared to SIEVE, LeCaR has much lower efciency; how-
ever, when replacing the LRU in LeCaR with SIEVE, it sig-
nicantly reduces LeCaR’s miss ratio by 4.5% on average.
TwoQ and ARC achieve efciency close to SIEVE; however,
when replacing the LRU with SIEVE, the efciency of both
algorithms gets boosted. For example, ARC-SIEVE achieves
the best efciency among all compared algorithms at both
small and large cache sizes. It reduces ARC’s miss ratio by
3.7% on average and up to 62.5% on the large cache size (re-
call that ARC reduces LRU’s miss ratio by 6.3% on average).
ARC-SIEVE also reduces SIEVE’s miss ratio by an average
of 2.4% and up to 40.6%.

To understand the potential in suggesting eviction candi-
dates, we evaluated the efciency of FIFO, LRU, and SIEVE,
granting them access to future request data. Each eviction can-
didate is either evicted or reinserted, depending on whether
the object will be requested soon. We assume that an object
will be requested soon if the logical time (number of requests)
till the object’s next access is no more than C

mr , where C is
the cache size and mr is the miss ratio. This mimics the case
that we have a perfect decision-maker choosing between the
eviction candidates suggested by multiple simple eviction
algorithms. Fig. 12c shows that when supplied with this addi-
tional information, SIEVE achieves the lowest miss ratio on
97% and 94% of the 1559 traces at the large and small cache
size, respectively.

These results highlight the potential of SIEVE as a pow-
erful cache primitive for designing advanced cache eviction
algorithms. Leveraging lazy promotion and quick demotion,
SIEVE not only performs well on its own but also bolsters the
performance of more complex algorithms.
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Figure 13: Byte miss ratio across all CDN traces.
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Figure 14: Byte miss ratios at different cache sizes on two Wiki CDN traces
used in LRB evaluation.

7 Discussion
7.1 Byte miss ratio
To gauge SIEVE’s efciency in reducing network band-

width usage in CDNs, we analyzed its byte miss ratio by
considering object sizes. We chose the cache size at 10% and
0.1% of the trace footprint in bytes. Fig. 13a and Fig. 13b
show that SIEVE presents larger byte miss ratio reductions at
ALL percentiles than state-of-the-art algorithms at both cache
sizes, showcasing its high efciency in CDN caches.
We further compared SIEVE with LRB [79], the state-of-

the-art machine-learning-based cache eviction algorithm op-
timized for byte miss ratio. Due to LRB’s long run time,
we only evaluated LRB on the two open-source Wiki traces
provided by the authors. Fig. 14a and Fig. 14b show that
LRB performs better at small cache sizes (1% and 2%), while
SIEVE excels at larger cache sizes. We conjecture that at a
small cache size, the ideal objects to cache are popular ob-
jects with many requests, which LRB can more easily identify
because they have more features (most of LRB’s features
are about the time between accesses to an object). When the
cache size is large, most objects in the cache have few re-
quests. Without enough features, a learned model can provide
little benets [94, 99]. In summary, compared to complex
machine-learning-based algorithms, SIEVE still has competi-
tive efciency.

7.2 SIEVE is not scan-resistant
Besides web cache workloads, we evaluated SIEVE on

some block cache workloads. However, we nd that SIEVE
sometimes shows a miss ratio higher than LRU. The primary
reason for this discrepancy is that SIEVE is not scan-resistant.
In block cache workloads, which frequently feature scans,
popular objects often intermingle with objects from scans.

Consequently, both types of objects are rapidly evicted af-
ter insertion. Since SIEVE does not use a ghost cache — a
shadow cache that keeps track of recently evicted items to
make smarter future eviction decisions — it cannot recognize
the popular objects when they are requested again. This prob-
lem is less severe on the large cache size, but when the cache
size is small, we observe that having a ghost is critical to be
scan-resistant. We conjecture that not being scan-resistant
is probably the reason why SIEVE remained undiscovered
over the decades of caching research, which has been mostly
focused on page and block accesses.

7.3 TTL-friendliness
Time-to-live (TTL) is a common feature in web

caching [97, 98]. It species the duration during which an
object can be used. After the TTL has elapsed, the object
expires and can no longer be served to the user, even if it may
still be cached. Most existing eviction algorithms today do not
consider object expiration and require a separate procedure,
e.g., scanning the cache, to remove expired objects. Similar
to FIFO, SIEVE maintains objects in insertion order, which
allows objects in TTL-partitioned caches, e.g., Segcache [98],
to be sorted by expiration time. This provides a convenient
method for discovering and removing expired objects.

8 Conclusion
We design SIEVE, a simple, efcient, fast, and scalable

cache eviction algorithm for web caches that leverages “lazy
promotion” and “quick demotion”. The high efciency in
SIEVE comes from gradually sifting out the unpopular ob-
jects. SIEVE is the rst and the simplest cache primitive that
supports both lazy promotion and quick demotion. This serves
as the foundation for SIEVE’s high efciency and high perfor-
mance. Evaluated on 1559 traces from 7 datasets, we show
that SIEVE outperforms complex state-of-the-art algorithms
on over 45% of the traces. We implemented SIEVE in ve
open-source production libraries using less than 20 lines on
average.

Availability
The code and data used in this work are open-sourced

at https://github.com/cacheMon/NSDI24-SIEVE. This
repository includes both the simulator and prototypes.

Additionally, we have engineered cache libraries based on
SIEVE for various programming languages. More information
is available at https://sievecache.com.
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